一种加密域鲁棒图像哈希算法
作者:
作者简介:

秦川(1980-),男,博士,教授,CCF高级会员,主要研究领域为多媒体信息安全,信息隐藏,AI安全,密文域信号处理,数字取证;郭梦琦(1995-),女,硕士生,主要研究领域为多媒体信息安全,密文域信号处理;李欣然(1992-),女,博士生,主要研究领域为多媒体信息安全,信息隐藏,AI安全;钱振兴(1981-),男,博士,教授,主要研究领域为多媒体信息安全,信息隐藏,AI安全,密文域信号处理,数字取证;张新鹏(1975-),男,博士,教授,主要研究领域为多媒体信息安全,信息隐藏,AI安全,密文域信号处理,数字取证

通讯作者:

钱振兴,zxqian@fudan.edu.cn

中图分类号:

TP309

基金项目:

国家自然科学基金(U20B2051,U1936214)


Robust Image Hashing in Encrypted Domain
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [30]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    随着云计算的发展,越来越多的多媒体数据存储在云端,出于安全需要,往往需要对其加密后再上传至云端进行存储或运算等操作.针对加密图像,在不具备图像明文内容的情况下,为了认证图像内容的完整性和真实性,提出了一种基于Paillier同态加密的鲁棒图像哈希算法.该算法主要由3个部分构成:图像所有者端图像加密,云服务器端密文图像哈希计算以及接收者端明文图像哈希生成.具体地,图像所有者对图像进行Paillier加密,并将加密图像上传至云服务器,由云服务器利用Paillier密码系统的运算法则执行加密域DCT与Watson人眼视觉特征等的计算,并利用密钥控制的伪随机矩阵增加哈希的随机性,接收者解密并分析接收到的密文哈希,生成明文图像哈希.实验结果表明,所提算法在鲁棒性、唯一性和安全性上具有较理想的性能.

    Abstract:

    With the development of cloud computing, more and more multimedia data is stored in the cloud. For security needs, it is often necessary to encrypt images before uploading them to the cloud for storage or computing operations. Without knowing the plaintext content of the encrypted image, in order to verify the integrity of the image information and the authenticity of the content, an image hash algorithm based on Paillier homomorphic encryption is proposed. The algorithm is mainly composed of three parts:the image owner encrypts the image, the cloud server generates a ciphertext image hash, and the receiver generates a plaintext image hash. Specifically, the image owner encrypts the image and uploads the encrypted image to the cloud server. The cloud server uses the algorithm of the Paillier cryptosystem to perform calculations of DCT and Watson human visual features in encrypted domain, and uses a key-controlled pseudo-random matrix to increase the randomness of the ciphertext hash, thereby improving the security of the hash. The receiver decrypts and analyzes the received ciphertext hash to obtain the plaintext image hash. Experimental results show that the proposed algorithm has ideal performance in terms of robustness, uniqueness, and security.

    参考文献
    [1] Pun CM, Yan CP, Yuan XC. Image alignment-based multi-region matching for object-level tampering detection. IEEE Transactions on Information Forensics and Security, 2017, 12(2):377-391.[doi:10.1109/TIFS.2016.2615272]
    [2] Wang XF, Zhou XR, Zhang Q, Xu BC, Xue JR. Image alignment based perceptual image hash for content authentication. Signal Processing:Image Communication, 2020, 80:115642.[doi:10.1016/j.image.2019.115642]
    [3] Du L, Ho ATS, Cong RM. Perceptual hashing for image authentication:A survey. Signal Processing:Image Communication, 2020, 81:115713.[doi:10.1016/j.image.2019.115713]
    [4] Schneider M, Chang SF. A robust content based digital signature for image authentication. In:Proc. of the 3rd IEEE Int'l Conf. on Image Processing. Lausanne:IEEE, 1996. 227-230.
    [5] Liu YL, Xin GJ, Xiao Y. Robust image hashing using Radon transform and invariant features. Radioengineering, 2016, 25(3):556-564.[doi:10.13164/re.2016.0556]
    [6] Tang ZJ, Zhang XQ, Dai YM, Lan WW. Perceptual image hashing using local entropies and DWT. The Imaging Science Journal, 2013, 61(2):241-251.[doi:10.1179/1743131X11Y.0000000039]
    [7] Qin C, Chang CC, Tsou PL. Robust image hashing using non-uniform sampling in discrete Fourier domain. Digital Signal Processing, 2013, 23(2):578-585.[doi:10.1016/j.dsp.2012.11.002]
    [8] Duan J, Zhou JT, Li YM. Secure and verifiable outsourcing of large-scale nonnegative matrix factorization (NMF). IEEE Transactions on Services Computing, 2021, 14(6):1940-1953.[doi:10.1109/TSC.2019.2911282]
    [9] Chang V, Ramachandran M. Towards achieving data security with the Cloud Computing adoption framework. IEEE Transactions on Services Computing, 2016, 9(1):138-151.[doi:10.1109/TSC.2015.2491281]
    [10] Xia ZH, Wang XH, Zhang LG, Qin Z, Sun XM, Ren K. A privacy-preserving and copy-deterrence content-based image retrieval scheme in Cloud Computing. IEEE Transactions on Information Forensics and Security, 2016, 11(11):2594-2608.[doi:10.1109/TIFS.2016.2590944]
    [11] Jiang LZ, Xu CX, Wang XF, Luo B, Wang HQ. Secure outsourcing SIFT:Efficient and privacy-preserving image feature extraction in the encrypted domain. IEEE Transactions on Dependable and Secure Computing, 2020, 17(1):179-193.[doi:10.1109/TDSC.2017.2751476]
    [12] Erkin Z, Franz M, Guajardo J, Katzenbeisser S, Lagendijk I, Toft T. Privacy-preserving face recognition. In:Proc. of the 9th Int'l Symp. on Privacy Enhancing Technologies. Seattle:Springer, 2009. 235-253.
    [13] Hsu CY, Lu CS., Pei SC. Image feature extraction in encrypted domain with privacy-preserving SIFT. IEEE Transactions on Image Processing, 2012, 21(11):4593-4607.[doi:10.1109/TIP.2012.2204272]
    [14] Hu SS, Wang Q, Wang JJ, Qin Z, Ren K. Securing SIFT:Privacy-preserving outsourcing computation of feature extractions over encrypted image data. IEEE Transactions on Image Processing, 2016, 25(7):3411-3425.[doi:10.1109/TIP.2016.2568460]
    [15] Chen GM, Chen Q, Zhu XY, Chen YQ. Encrypted image feature extraction by privacy-preserving MFS. In:Proc. of the 7th Int'l Conf. on Digital Home (ICDH). Guilin:IEEE, 2018. 42-45.
    [16] Xia ZH, Jiang LQ, Ma XH, Yang WY, Ji PZ, Xiong NN. A privacy-preserving outsourcing scheme for image local binary pattern in secure industrial internet of things. IEEE Transactions on Industrial Informatics, 2020, 16(1):629-638.[doi:10.1109/TII.2019.2913217]
    [17] Yang TF, Ma JF, Wang Q, Miao YB, Wang X, Meng Q. Image feature extraction in encrypted domain with privacy-preserving Hahn moments. IEEE Access, 2018, 6:47521-47534.[doi:10.1109/TII.2019.2913217]
    [18] 王祥宇, 马建峰, 苗银宾. 高效隐私保护的多用户图像外包检索方案. 通信学报, 2019, 40(2):31-39.[doi:10.11959/j.issn.1000-436x.2019023]
    Wang XY, Ma JF, Miao YB. Efficient privacy-preserving image retrieval scheme over outsourced data with multi-user. Journal on Communications, 2019, 40(2):31-39 (in Chinese with English abstract).[doi:10.11959/j.issn.1000-436x.2019023]
    [19] 项世军, 杨乐. 基于同态加密系统的图像鲁棒可逆水印算法. 软件学报, 2018, 29(4):957-972. http://www.jos.org.cn/1000-9825/5406.htm
    Xiang SJ, Yang L. Robust and reversible image watermarking algorithm in homomorphic encrypted domain. Ruan Jian Xue Bao/Journal of Software, 2018, 29(4):957-972 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/5406.htm
    [20] Paillier P. Public-Key cryptosystems based on composite degree residuosity classes. In:Proc. of the Int'l Conf. on Advances in Cryptology. Prague:Springer, 1999. 223-238.
    [21] 李宗育, 桂小林, 顾迎捷, 李雪松, 戴慧珺, 张学军. 同态加密技术及其在云计算隐私保护中的应用. 软件学报, 2018, 29(7):1827-1851. http://www.jos.org.cn/1000-9825/5354.htm
    Li ZY, Gui XL, Gu YJ, Li XS, Dai HJ, Zhang XJ. Survey on homomorphic encryption algorithm and its application in the privacy-preserving for cloud computing. Ruan Jian Xue Bao/Journal of Software, 2018, 29(7):1827-1851 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/5354.htm
    [22] USC. The USC-SIPI image database. 2019. http://sipi.usc.edu/database/
    [23] Schaefer G, Stich M. UCID:An uncompressed color image database. In:Proc. of SPIE 5307, Storage and Retrieval Methods and Applications for Multimedia 2004. San Jose:SPIE, 2003. 472-480.
    [24] Qin C, Hu YC, Yao H, Duan XT, Gao LP. Perceptual image hashing based on weber local binary pattern and color angle representation. IEEE Access, 2019, 7:45460-45471.[doi:10.1109/ACCESS.2019.2908029]
    [25] Tang ZJ, Zhang XQ, Li XX, Zhang SC. Robust image hashing with ring partition and invariant vector distance. IEEE Transactions on Information Forensics and Security, 2016, 11(1):200-214.[doi:10.1109/TIFS.2015.2485163]
    [26] Tang ZJ, Zhang XQ, Zhang SC. Robust perceptual image hashing based on ring partition and NMF. IEEE Transactions on Knowledge and Data Engineering, 2014, 26(3):711-724.[doi:10.1109/TKDE.2013.45]
    [27] Tang ZJ, Huang LY, Zhang XQ, Lao H. Robust image hashing based on color vector angle and Canny operator. AEU-International Journal of Electronics and Communications, 2016, 70(6):833-841.[doi:10.1016/j.aeue.2016.03.010]
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

秦川,郭梦琦,李欣然,钱振兴,张新鹏.一种加密域鲁棒图像哈希算法.软件学报,2023,34(2):868-883

复制
分享
文章指标
  • 点击次数:954
  • 下载次数: 2953
  • HTML阅读次数: 2455
  • 引用次数: 0
历史
  • 收稿日期:2021-04-30
  • 最后修改日期:2021-06-07
  • 在线发布日期: 2022-05-24
  • 出版日期: 2023-02-06
文章二维码
您是第20262623位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号