融入法律知识的问句匹配
作者:
作者简介:

刘权(1995-),男,硕士,主要研究领域为自然语言处理,文本匹配;余正涛(1970-),男,博士,教授,CCF高级会员,主要研究领域为自然语言处理,机器翻译,信息检索;何世柱(1987-),男,博士,副研究员,CCF专业会员,主要研究领域为问答系统,知识推理,知识图谱,自然语言处理;刘康(1981-),男,博士,研究员,CCF高级会员,主要研究领域为自然语言处理;高盛祥(1977-),女,博士,副教授,CCF专业会员,主要研究领域为自然语言处理,信息检索,机器翻译.

中图分类号:

TP391

基金项目:

国家重点研发计划(2018YFC0830105, 2018YFC0830101, 2018YFC0830100); 国家自然科学基金(61761026, 61972186, 61762056)


Incorporating Legal Knowledge into Question Matching
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [40]
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    问句匹配是问答系统的重要任务, 当前方法通常采用神经网络建模两个句子的语义匹配程度. 但是, 在法律领域中, 问句常存在文本表征稀疏、法律词的专业性较强、句子蕴含法律知识不足等问题. 因此, 通用领域的深度学习文本匹配模型在法律问句匹配任务上效果并不好. 为了让模型更好的理解法律问句的含义、建模法律领域知识, 首先构建一个法律领域知识库, 在此基础上提出一种融合法律领域知识(如法律词汇和法律法条)的问句匹配模型. 具体地, 构建了合同纠纷、离婚、交通事故、劳动工伤、债务债权等5种法律纠纷类别下的法律词典, 并且收集了相关法律法条, 构建法律领域知识库. 在问句匹配中, 首先查询法律知识库检索问句对所对应的法律词汇和法律法条, 进而通过交叉关注模型同时建模问句、法律词汇、法律法条三者之间的关联, 最终实现更精准的问句匹配, 在多个法律类别下的实验表明提出的方法能有效提升问句匹配性能.

    Abstract:

    Question matching is an important task of question answering systems. Current methods usually use neural networks to model the semantic matching degree of two sentences. However, in the field of law, questions often have some problems, such as sparse textual representation, professional legal words, and insufficient legal knowledge contained in sentences. Therefore, the general domain deep learning text matching model is not effective in the legal question matching task. In order to make the model better understand the meaning of legal questions and model the knowledge of the legal field, this study firstly constructs a knowledge base of the legal field, and then proposes a question matching model integrating the knowledge of the legal field (such as legal words and statutes). Specifically, a legal dictionary under five categories of legal disputes has been constructed, including contract dispute, divorce, traffic accident, labor injury, debt and creditor’s right, and relevant legal articles have been collected to build a knowledge base in the legal field. In question matching, the legal knowledge base is first searched for the legal words and statutes corresponding to the question pair, and then the relationship among the question, legal words, and statutes is modeled simultaneously through the cross attention model. Finally, to achieve more accurate question matching, experiments under multiple legal categories were carried out, and the results show that the proposed method in this study can effectively improve the performance of question matching.

    参考文献
    [1] Buscaldi D, Rosso P, Gómez-Soriano JM, Sanchis E. Answering questions with an n-gram based passage retrieval engine. Journal of Intelligent Information Systems, 2010, 34(2):113-134.[doi:10.1007/s10844-009-0082-y]
    [2] Taniguchi R, Kano Y. Legal yes/no question answering system using case-role analysis. In:Proc. of the 2017 JSAI Int'l Symp. on Artificial Intelligence. Kanagawa:Springer, 2017. 284-298.
    [3] Fawei B, Wyner A, Pan JZ, Kollingbaum M. Using legal ontologies with rules for legal textual entailment. In:Proc. of the 2018 AICOL Int'l Workshops on AI Approaches to the Complexity of Legal Systems. Springer, 2018. 317-324.
    [4] 冼健, 莫玄朗, 奚建清. 基于问题模式匹配的智能答疑系统原型[J]. 山东大学学报(理学版), 2006, 41(3):99-103.[doi:10.3969/j.issn.1671-9352.2006.03.024] Xian J, Mo XL, Xi JQ. A question answering system based on question pattern match. Journal of Shandong University, 2006, 41(3):99-103(in Chinese with English abstract).[doi:10.3969/j.issn.1671-9352.2006.03.024]
    [5] Huang PS, He XD, Gao JF, Deng L, Acero A, Heck L. Learning deep structured semantic models for Web search using clickthrough data. In:Proc. of the 22nd ACM Int'l Conf. on Information & Knowledge Management. San Francisco:Association for Computing Machinery, 2013. 2333-2338.
    [6] Shen YL, He XD, Gao JF, Deng L, Mesnil G. A latent semantic model with convolutional-pooling structure for information retrieval. In:Proc. of the 23rd ACM Int'l Conf. on Conf. on Information and Knowledge Management. Shanghai:Association for Computing Machinery, 2014. 101-110.
    [7] Severyn A, Moschitti A. Learning to rank short text pairs with convolutional deep neural networks. In:Proc. of the 38th Int'l ACM SIGIR Conf. on Research and Development in Information Retrieval. Santiago:Association for Computing Machinery, 2015. 373-382.
    [8] Yin WP, Schütze H, Xiang B, Zhou BW. ABCNN:Attention-based convolutional neural network for modeling sentence pairs. Transactions of the Association for Computational Linguistics, 2016, 4:259-272.[doi:10.1162/tacl_a_00097]
    [9] Devlin J, Chang MW, Lee K, Toutanova K. BERT:Pre-training of deep bidirectional transformers for language understanding. In:Proc. of the 2019 Conf. of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies, Vol. 1(Long and Short Papers). Minneapolis:Association for Computational Linguistics, 2019. 4171-4186.
    [10] Wang ZG, Hamza W, Florian R. Bilateral multi-perspective matching for natural language sentences. In:Proc. of the 26th Int'l Joint Conf. on Artificial Intelligence. Melbourne:IJCAI.org, 2017. 4144-4150.
    [11] Berger A, Lafferty J. Information retrieval as statistical translation. ACM SIGIR Forum, 2017, 51(2):219-226.[doi:10.1145/3130348.3130371]
    [12] Gao JF, He XD, Nie JY. Clickthrough-based translation models for web search:From word models to phrase models. In:Proc. of the 19th ACM Int'l Conf. on Information and Knowledge Management. Toronto:Association for Computing Machinery, 2010. 1139-1148.
    [13] Bai B, Weston J, Collobert R, Grangier D. Supervised semantic indexing. In:Proc. of the 31st European Conf. on Advances in Information Retrieval. Toulouse:Springer, 2009. 761-765.
    [14] Gao JF, Toutanova K, Yih WT. Clickthrough-based latent semantic models for web search. In:Proc. of the 34th Int'l ACM SIGIR Conf. on Research and Development in Information Retrieval. Beijing:Association for Computing Machinery, 2011. 675-684.
    [15] Bowman SR, Angeli G, Potts C, Manning CD. A large annotated corpus for learning natural language inference. In:Proc. of the 2015 Conf. on Empirical Methods in Natural Language Processing. Lisbon:Association for Computational Linguistics, 2015. 632-642.
    [16] Yu L, Hermann KM, Blunsom P, Pulman S. Deep learning for answer sentence selection. arXiv:1412.1632, 2014.
    [17] Tan M, dos Santos C, Xiang B, Zhou BW. Improved representation learning for question answer matching. In:Proc. of the 54th Annual Meeting of the Association for Computational Linguistics. Berlin:Association for Computational Linguistics, 2016. 464-473.
    [18] Parikh A, Täckström O, Das D, Uszkoreit J. A decomposable attention model for natural language inference. In:Proc. of the 2016 Conf. on Empirical Methods in Natural Language Processing. Austin:Association for Computational Linguistics, 2016. 2249-2255.
    [19] Chen Q, Zhu XD, Ling ZH, Wei S, Jiang H, Inkpen D. Enhanced LSTM for natural language inference. In:Proc. of the 55th Annual Meeting of the Association for Computational Linguistics. Vancouver:Association for Computational Linguistics, 2017. 1657-1668.
    [20] Chen Q, Zhu XD, Ling ZH, Inkpen D, Wei S. Neural natural language inference models enhanced with external knowledge. In:Proc. of the 56th Annual Meeting of the Association for Computational Linguistics. Melbourne:Association for Computational Linguistics, 2018. 2406-2417.
    [21] Tay Y, Luu AT, Hui SC. Compare, compress and propagate:Enhancing neural architectures with alignment factorization for natural language inference. In:Proc. of the 2018 Conf. on Empirical Methods in Natural Language Processing. Brussels:Association for Computational Linguistics, 2018. 1565-1575.
    [22] Gong YC, Luo H, Zhang J. Natural language inference over interaction space. In:Proc. of the 6th Int'l Conf. on Learning Representations. Vancouver:OpenReview.net, 2018.
    [23] Tan CQ, Wei FR, Wang WH, Lv WF, Zhou M. Multiway attention networks for modeling sentence pairs. In:Proc. of the 27th Int'l Joint Conf. on Artificial Intelligence. Stockholm:IJCAI.org, 2018. 4411-4417.
    [24] Tay Y, Luu AT, Hui SC. Co-stack residual affinity networks with multi-level attention refinement for matching text sequences. In:Proc. of the 2018 Conf. on Empirical Methods in Natural Language Processing. Brussels:Association for Computational Linguistics, 2018. 4492-4502.
    [25] Kim S, Kang I, Kwak N. Semantic sentence matching with densely-connected recurrent and co-attentive information. In:Proc. of the 33rd AAAI Conf. on Artificial Intelligence. Honolulu:AAAI, 2019. 6586-6593.
    [26] Liu XD, Duh K, Gao JF. Stochastic answer networks for natural language inference. arXiv:1804.07888, 2018.
    [27] Wu Y, Wu W, Xu C, Li ZJ. Knowledge enhanced hybrid neural network for text matching. In:Proc. of the 32nd AAAI Conf. on Artificial Intelligence. New Orleans:AAAI, 2018. 5586-5593.
    [28] Khashabi D, Khot T, Sabharwal A, Roth D. Question answering as global reasoning over semantic abstractions. In:Proc. of the 32nd AAAI Conf. on Artificial Intelligence. New Orleans:AAAI, 2018. 1905-1914.
    [29] Yang JX, Rong WG, Shi LB, Xiong Z. Sequential attention with keyword mask model for community-based question answering. In:Proc. of the 2019 Conf. of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies, Vol. 1(Long and Short Papers). Minneapolis:Association for Computational Linguistics, 2019. 2201-2211.
    [30] Mikolov T, Chen K, Corrado G, Dean J. Efficient estimation of word representations in vector space. In:Proc. of the 1st Int'l Conf. on Learning Representations. Scottsdale, 2013.
    [31] Joulin A, Grave E, Bojanowski P, Douze M, Jégou H, Mikolov T. FastText.zip:Compressing text classification models. arXiv:1612.03651, 2016.
    [32] Chalkidis I, Kampas D. Deep learning in law:Early adaptation and legal word embeddings trained on large corpora. Artificial Intelligence and Law, 2019, 27(2):171-198.[doi:10.1007/s10506-018-9238-9]
    [33] Nay JJ. Gov2Vec:Learning distributed representations of institutions and their legal text. In:Proc. of the 1st Workshop on NLP and Computational Social Science. Austin:Association for Computational Linguistics, 2016. 49-54.
    [34] Luo BF, Feng YS, Xu JB, Xu JB, Zhang X, Zhao DY. Learning to predict charges for criminal cases with legal basis. In:Proc. of the 2017 Conf. on Empirical Methods in Natural Language Processing. Copenhagen:Association for Computational Linguistics, 2017. 2727-2736.
    [35] Wu L, Wang Y, Gao JB, Li X. Where-and-when to look:Deep siamese attention networks for video-based person re-identification. IEEE Transactions on Multimedia, 2019, 21(6):1412-1424.[doi:10.1109/TMM.2018.2877886]
    [36] Wu L, Wang Y, Li X, Gao JB. Deep attention-based spatially recursive networks for fine-grained visual recognition. IEEE Transactions on Cybernetics, 2019, 49(5):1791-1802.[doi:10.1109/TCYB.2018.2813971]
    [37] Zhong HX, Guo ZP, Tu CC, Xiao CJ, Liu ZY, Sun MS. Legal judgment prediction via topological learning. In:Proc. of the 2018 Conf. on Empirical Methods in Natural Language Processing. Brussels:Association for Computational Linguistics, 2018. 3540-3549.
    [38] Galgani F, Compton P, Hoffmann A. Combining different summarization techniques for legal text. In:Proc. of the 2012 Workshop on Innovative Hybrid Approaches to the Processing of Textual Data. Avignon:Association for Computational Linguistics, 2012. 115-123.
    [39] Seki Y. Sentence extraction by tf/idf and position weighting from newspaper. In:Proc. of the 3rd NTCIR Workshop on Research in Information Retrieval. Tokyo:National Institute of Informatics, 2002.
    [40] Yang RQ, Zhang JH, Gao X, Ji F, Chen HQ. Simple and effective text matching with richer alignment features. In:Proc. of the 57th Annual Meeting of the Association for Computational Linguistics. Florence:Association for Computational Linguistics, 2019. 4699-4709.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

刘权,余正涛,何世柱,刘康,高盛祥.融入法律知识的问句匹配.软件学报,2023,34(4):1824-1836

复制
分享
文章指标
  • 点击次数:858
  • 下载次数: 2227
  • HTML阅读次数: 1662
  • 引用次数: 0
历史
  • 收稿日期:2020-10-24
  • 最后修改日期:2021-01-13
  • 在线发布日期: 2022-07-15
  • 出版日期: 2023-04-06
文章二维码
您是第19754386位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号