区块链闪电网络实证分析:拓扑、发展和收费策略
作者:
作者简介:

计算机网络与信息安全

通讯作者:

陈艳姣,chenyj.thu@gmail.com

中图分类号:

TP309

基金项目:

国家自然科学基金(61972296)


Empirical Analysis of Lightning Network: Topology, Evolution, and Fees
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [28]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    比特币闪电网络作为最广泛使用的支付通道网络之一,自其2016年提出就引起了广泛关注.支付通道网络是一种用以解决区块链可扩展性问题的Layer-2技术.在支付通道网络中,参与者只需在区块链上提交开通和关闭支付通道的Layer-1事务,就可以在链下完成多笔支付交易.这一工作机制既避免了等待每笔交易被验证的时间耗费,同时也节省了交易费用.然而,由于闪电网络投入使用的时间较短,以往的相关研究都是基于有限的、闪电网络仍处于快速发展时期的数据,缺乏必要的时效性.为了填补这一空白,全面了解闪电网络的拓扑结构及其发展趋势,基于更新至2020年7月、具有高时效性的数据,采用图分析的方法描述闪电网络静态和动态的特征.同时对网络中节点进行聚类分析,并从聚类结果中得到了一些结论.此外,通过比较链上和链下的交易费用,对闪电网络的收费机制作了更进一步的研究.

    Abstract:

    Being one of the most deployed payment channel networks (PCN), the lightning network (LN) has attracted much attention since it was proposed in 2016. The LN is a layer-2 technology addressing the scalability problem of bitcoin. In LN, participants only need to submit layer-1 transactions on the blockchain to open and close the payment channel, and they can issue multiple transactions off-chain. This working mechanism avoids the waste of time on waiting for every transaction to be verified and simultaneously saves transaction fees. However, as the time of LN put in practice is rather short, previous works were based on small volume and rapidly-changing data, which lacks necessary time-effectiveness. To fill in the gap and get a comprehensive understanding of the topology of LN and its evolving trend, this study characterizes both static and dynamic features of LN by leveraging graph analysis based on data of high time- effectiveness updated to July, 2020. A clustering analysis of the nodes is carried out, and some conclusions and insights derived of the clustering results are presented. Moreover, an additional study of the charging mechanism in LN is conducted by comparing the on-chain and off-chain transaction fees.

    参考文献
    [1] Poon J, Dryja T. The bitcoin lightning network: Scalable off-chain instant payments. 2016. https://lightning.network/lightning-network-paper.pdf
    [2] Seres IA, Gulyás L, Nagy DA, Burcsi P. Topological analysis of bitcoin's lightning network. arXiv preprint arXiv: 1901.04972, 2019.
    [3] Martinazzi S, Flori A. The evolving topology of the lightning network: Centralization, efficiency, robustness, synchronization, and anonymity. PloS One, 2020, 15(1): e0225966.
    [4] Rohrer E, Malliaris J, Tschorsch F. Discharged payment channels: Quantifying the lightning network's resilience to topology-based attacks. In: Proc. of the IEEE European Symp. on Security and Privacy Workshops (EuroS & PW). IEEE, 2019.347-356.
    [5] Prihodko P, Zhigulin S, Sahno M, Ostrovskiy A, Osuntokun O. Flare: An Approach to Routing in Lightning Network. White Paper, 2016.
    [6] Di Stasi G, Avallone S, Canonico R, Ventre G. Routing payments on the lightning network. In: Proc. of the IEEE Int'l Conf. on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData). IEEE, 2018.1161-1170.
    [7] Béres F, Seres IA, Benczúr AA. A cryptoeconomic traffic analysis of bitcoins lightning network. arXiv preprint arXiv: 1911.09432, 2019.
    [8] LNchannels. https://ln.bigsun.xyz/
    [9] Clauset A, Shalizi CR, Newman MEJ. Power-law distributions in empirical data. In: Proc. of the SIAM Review. 2019.661-703.
    [10] Bitcoin's 'lightning torch' explained. https://www.coindesk.com/bitcoins-lightning-torch-has-blazed-through-37-countries-so-far
    [11] Watchtowers. https://www.coindesk.com/blockstreams-watchtowers-will-bring-a-new-justice-system-to-the-lightning-network
    [12] Bitcoinnews. https://www.coindesk.com/a-dangerous-bug-in-bitcoins-lightning-network-has-been-fixed
    [13] Li L, Alderson D, Doyle JC, Willinger W. Towards a theory of scale-free graphs: Definition, properties, and implications. Internet Mathematics, 2005, 2(4): 431-523.
    [14] Just W, Callender H, LaMar MD. Clustering coefficients. Technical Report, Dosegljivo: Ohio University, 2015. https://qubeshub.org/resources/741/download/ModuleCCQ.pdf
    [15] Lee J, Rodgers W, Nicewander A. Thirteen ways to look at the correlation coefficient. The American Statistician, 1988, 42(1): 59-66.
    [16] Taylor R. Interpretation of the correlation coefficient: A basic review. Journal of Diagnostic Medical Sonography, 1990, 6(1): 35-39.
    [17] Saramäki J, Kivelä M, Onnela JP, Kaski K, Kertesz J. Generalizations of the clustering coefficient to weighted complex networks. Physical Review E, 2007, 75(2): 027105.
    [18] Estrada E, Rodriguez-Velazquez JA. Subgraph centrality in complex networks. Physical Review E, 2005, 71(5): 056103.
    [19] Brandes U. A faster algorithm for betweenness centrality. Journal of Mathematical Sociology, 2001, 25(2): 163-177.
    [20] Borgatti SP, Everett MG. A graph-theoretic perspective on centrality. Social Networks, 2006, 28(4): 466-484.
    [21] Miller A, Litton J, Pachulski A, Gupta N, Levin D, Spring N, Bhattacharjee B. Discovering bitcoin's public topology and influential nodes. 2015. https://allquantor.at/blockchainbib/pdf/miller2015topology.pdf
    [22] Neudecker T, Andelfinger P, Hartenstein H. Timing analysis for inferring the topology of the bitcoin peer-to-peer network. In: Proc. of the Int'l IEEE Conf. on Ubiquitous Intelligence & Computing, Advanced and Trusted Computing, Scalable Computing and Communications, Cloud and Big Data Computing, Internet of People, and SmartWorld Congress (UIC/ATC/ScalCom/CBDCom/IoP/SmartWorld). IEEE, 2016.358-367.
    [23] Decker C, Wattenhofer R. Information propagation in the bitcoin network. In: Proc. of the IEEE P2P 2013. IEEE, 2013.1-10.
    [24] Fadhil M, Owenson G, Adda M. A bitcoin model for evaluation of clustering to improve propagation delay in Bitcoin network. In: Proc. of the IEEE Int'l Conf. on Computational Science and Engineering (CSE) and IEEE Int'l Conf. on Embedded and Ubiquitous Computing (EUC) and the 15th Int'l Symp. on Distributed Computing and Applications for Business Engineering (DCABES). 2016.468-475.
    [25] Ober M, Katzenbeisser S, Hamacher K. Structure and anonymity of the bitcoin transaction graph. Future Internet, 2013, 5(2): 237-250.
    [26] Ron D, Shamir A. Quantitative analysis of the full bitcoin transaction graph. In: Proc. of the Int'l Conf. on Financial Cryptography and Data Security. Springer, 2013.6-24.
    [27] Fleder M, Kester MS, Pillai S. Bitcoin transaction graph analysis. arXiv preprint arXiv: 1502.01657, 2015.
    [28] Reid F, Harrigan M. An analysis of anonymity in the bitcoin system. In: Proc. of the 3rd IEEE Int'l Conf. on Privacy, Security, Risk and Trust (PASSAT)/the 3rd IEEE Int'l Conf. on Social Computing (SocialCom). IEEE, 2011.1318-1326.
    引证文献
引用本文

陈艳姣,朱笑天,于永瑞,程子英.区块链闪电网络实证分析:拓扑、发展和收费策略.软件学报,2022,33(10):3858-3873

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2020-12-09
  • 最后修改日期:2021-03-15
  • 在线发布日期: 2021-08-02
  • 出版日期: 2022-10-06
文章二维码
您是第19765710位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号