基于多样性分类和距离回归的进化算法
CSTR:
作者:
作者单位:

作者简介:

算法设计与分析

通讯作者:

孙哲人,szheren2k@163.com

中图分类号:

TP301

基金项目:

江苏省科技支撑计划(BE2013879)


Diversity Classification and Distance Regression Assisted Evolutionary Algorithm
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    提出了一个基于多样性分类和距离回归的进化算法(DCDREA),以解决昂贵超多目标优化问题(MaOPs).DCDREA采用随机森林(RF)作为全局分类代理模型,它把种群中所有解作为训练样本,并根据是否为最小相关解,把训练样本分类为正负样本,使模型学习到训练样本中含有的分类标准.全局分类代理模型主要用来筛选新产生的候选解,以得到一组有希望的候选解.此外,它采用Kriging作为局部回归代理模型,其选择种群中距离当前候选解最近的解作为训练样本,拟合训练样本与理想点的距离.然后,通过K-means方法把候选解划分为μ个簇,并从每个簇中选择一个用于真实评估的候选解.在实验部分,使用大规模3、4、6、8、10目标的DTLZ测试问题集,把DCDREA与目前流行的代理辅助进化算法进行对比实验.对于不同测试问题,每个算法独立运行20次,然后统计反向迭代距离(IGD)和算法运行时间.最后,使用秩和检验来分析结果.实验对比结果表明,DCDREA在大多数情况下表现更好.由此可见,DCDREA具有较好的有效性和可行性.

    Abstract:

    This study proposed a diversity classification and distance regression assisted evolutionary algorithm (DCDREA) to solve expensive many-objective optimization problems (MaOPs). In DCDREA, the random forest (RF) is adopted as the global classification surrogate model. All the solutions in the population are as the training samples and classified into positive or negative samples according to whether they are minimum correlative solutions, so that the model can learn the classification criteria contained in the training samples. The global classification surrogate model is mainly used to filter the newly generated candidates to obtain a group of promising candidates. In addition, Kriging is adopted as the local regression surrogate model, where the solutions closest to the current candidates in the population are selected as the training samples, and the distance between the training samples and the ideal point is approximated by the model. Then, by the K-means method, the candidates are divided into μ clusters, and from each cluster, one candidate is selected for real function evaluation. In the experimental part, the DTLZ suite with large scale 3, 4, 6, 8, and 10 objectives was used to compare DCDREA with the current popular surrogate-assisted evolutionary algorithms. For different test problems, each algorithm was run independently for 20 times. Then the inverted generational distance (IGD) and algorithm running time were counted. At last, the Wilcoxon rank sum test was used to analyze the results. The result comparison shows that DCDREA performs better in most cases, indicating that DCDREA has sound effectiveness and feasibility.

    参考文献
    相似文献
    引证文献
引用本文

孙哲人,黄玉划,陈志远.基于多样性分类和距离回归的进化算法.软件学报,2022,33(10):3700-3716

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2020-08-25
  • 最后修改日期:2020-11-07
  • 录用日期:
  • 在线发布日期: 2022-10-13
  • 出版日期: 2022-10-06
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号