一般存取结构上抗内存泄露的多级秘密共享
作者:
作者简介:

计算机网络与信息安全

通讯作者:

李志慧,lizhihui@snnu.edu.cn

中图分类号:

TP393

基金项目:

国家自然科学基金(61602291,61802241);中国博士后科学基金(2018M633456);陕西省自然科学基础研究计划(2019JQ-472);中央高校基本科研业务费专项资金(GK202003093)


Memory Leakage-resilient Multi-stage Secret Sharing Scheme with General Access Structures
Author:
Fund Project:

National Natural Science Foundation of China 61602291,61802241); China Postdoctoral Science Foundation (2018M633456);Natural Science Basic Research Plan in Shaanxi Province of China (2019JQ-472); Fundamental Research Funds for the Central Universities(GK202003093)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [40]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    在多级秘密共享方案中,每级存取结构里的授权集中参与者可联合重构对应的秘密.但在实际中,腐化了非授权集的攻击者可通过内存攻击获取部分或全部其余参与者的份额信息,从而非法得到部分甚至是全部的秘密信息.面对这样的内存泄漏,现有的多级秘密共享方案都不再安全.基于此,首先给出了抗内存泄漏的多级秘密共享对选择秘密攻击不可区分的形式化的计算安全模型.然后,利用物理不可克隆函数及模糊提取器的联合作用,基于极小线性码构造了一个适用于一般存取结构的抗内存泄露的可验证多级秘密共享方案.同时,在内存攻击者存在的情况下,证明方案在随机预言模型下是计算安全的.最后,将所提出方案与现有方案在性能和计算复杂度两方面进行了比较分析.

    Abstract:

    In the multi-stage secret sharing scheme, the participants of authorized sets in each level of access structures can jointly reconstruct the corresponding secret. But in reality, adversaries who corrupted an unauthorized set can obtain some or even all of the share information of the uncorrupted participants through memory attacks, thereby illegally obtaining some or even all of the shared secrets. Facing with such memory leaks, the existing multi-stage secret sharing schemes are no longer secure. Based on this, this study firstly proposes a formal computational security model of indistinguishable ability against chosen secret attack for multi-stage secret sharing. Then, using the combination of the physical unclonable function and the fuzzy extractor, a verifiable memory leakage-resistant multi- stage secret sharing scheme for general access structures is constructed based on the minimal linear codes. Furthermore, in the presence of a memory attacker, it is proved that the scheme is computational secure in the random oracle model. Finally, the proposed scheme is compared with the existing schemes in terms of their properties and computational complexity.

    参考文献
    [1] Shamir A. How to share a secret. Communications of the ACM, 1979, 22: 612-613.
    [2] Blakley GR. Safeguarding cryptographic keys. Proc. of AFIPS NCC, 1979, 48: 313-317.
    [3] Zhang YS, Li WJ, Chen L, Bi W, Yang T. Verifiable special threshold secret sharing scheme based on eigenvalue. Journal on Communications, 2018, 39(8): 169-175(in Chinese with English abstract).
    [4] Tan ZH, Yang GM, Wang XW, Cheng W, Ning JY. Multidimensional spherical threshold secret sharing scheme for cloud storage. Ruan Jian Xue Bao/Journal of Software, 2016, 27(11): 2912-2928(in Chinese with English abstract). http://www.jos.org.cn/1000-9825/4943.htm[doi: 10.13328/j.cnki.jos.004943]
    [5] Meng KJ, Miao FY, Huang WC, et al. Threshold changeable secret sharing with secure secret reconstruction. Information Processing Letters, 2020, 157: 105928.
    [6] Liu H, Li XH, Tian YL, et al. Rational fair secret sharing scheme. Chinese Journal of Computers, 2020, 43(8): 1517-1533(in Chinese with English abstract).
    [7] Ito M, Saito A, Nishizeki T. Secret sharing schemes realizing general access structures. In: Proc. of the IEEE Global Telecommunications Conf. 1987.99-102.
    [8] Massey JL. Some applications of coding theory in cryptography. In: Proc. of the Cryptography and Coding IV. Formara Ltd., 1995.33-47.
    [9] Stinson DR. An explication of secret sharing schemes. Designs Codes & Cryptography, 1992, 2(4): 357-390.
    [10] Brickell EF. Some ideal secret sharing schemes. Journal of Combinatorial Mathematics & Combinatorial Computing, 1989, 9(6): 105-113.
    [11] Lin C, Hu H, Chang CC, et al. A publicly verifiable multi-secret sharing scheme with outsourcing secret reconstruction. In: Proc. of the IEEE Access. 2018.1.
    [12] Kabirirad S, Eslami Z. Improvement of (n, n)-multi-secret image sharing schemes based on boolean operations. Journal of Information Security and Applications, 2019, 47: 16-27.
    [13] Zhang BH, Tang YS. On the construction and analysis of verifiable multi-secret sharing based on non-homogeneous linear recursion. Journal of Information Science and Engineering, 2018, 34(3): 749-763.
    [14] Miao F, Wang L, Ji Y, et al. GOMSS: A simple group oriented (t, m, n) multi-secret sharing scheme. Chinese Journal of Electronics, 2017, 26(3): 557-563.
    [15] Dehkordi MH, Oraei H. How to construct a verifiable multi-secret sharing scheme based on graded encoding schemes. IET Information Security, 2019, 13(4): 343-351.
    [16] Li J, Wang X, Huang Z, et al. Multi-level muti-secret sharing scheme for decentralized e-voting in cloud computing. Journal of Parallel and Distributed Computing, 2019, 130: 91-97.
    [17] Mashhadi S, Dehkordi MH, Kiamari N. Provably secure verifiable multi-stage secret sharing scheme based on monotone span program. IET Information Security, 2017, 11(6): 326-331.
    [18] Song Y, Li ZH, Li YM, et al. A new multi-use multi-secret sharing scheme based on the duals of minimal linear codes. Security and Communication Networks, 2015, 8(2): 202-211.
    [19] Basit A, Chanakya P, Venkaiah VC, et al. New multi-secret sharing scheme based on super increasing sequence for level-ordered access structure. Int'l Journal of Communication Networks and Distributed Systems, 2020, 24(1): 1.
    [20] Zhang J, Zhang F. Information-theoretical secure verifiable secret sharing with vector space access structures over bilinear groups and its applications. Future Generation Computer Systems, 2015, 52: 109-115.
    [21] Harn L. Unconditionally secure verifiable secret sharing scheme. Advances in Information Sciences & Service Sciences, 2012, 4(17): 514-518.
    [22] Krawczyk H. Secret sharing made short. In: Proc. of the Crypto'93. LNCS 773, Springer, 1993.136-146.
    [23] Hsu CF, Harn L, Cui G. An ideal multi-secret sharing scheme based on connectivity of graphs. Wireless Personal Communications, 2014, 77(1): 383-394.
    [24] Dehkordi MH, Mashhadi S, Oraei H. A proactive multi stage secret sharing scheme for any given access structure. Wireless Personal Communications, 2019, 104: 491-503.
    [25] Lin CL, Yan XF, Niu QW, et al. Cheating immune multi-secret sharing without predefined order of secrets. Journal of the Chinese Institute of Engineers, 2019, 42(1): 15-19.
    [26] Zhang T, Ke X, Liu Y. (t, n) multi-secret sharing scheme extended from Harn-Hsu's scheme. Eurasip Journal on Wireless Communications and Networking, 2018(1): 1-4.
    [27] Herranz J, Ruiz A, Saez G. Sharing many secrets with computational provable security. Information Processing Letters, 2013, 113(14-16): 572-579.
    [28] Herranz J, Ruiz A, Saez G. New results and applications for multi-secret sharing schemes. Designs, Codes and Cryptography, 2014, 73(3): 841-864.
    [29] Mashhadi S. A CSA-secure multi-secret sharing scheme in the standard model. Journal of Applied Security Research, 2020, 15(1): 84-95.
    [30] Dai SG, Wei JF, Zhang FG. Memory leakage-resilient secret sharing schemes. Science China (Information Sciences), 2015, 58(11): 1-9.
    [31] Ding C, Yuan J. Covering and secret sharing with linear codes. In: Proc. of the Discrete Mathematics and Theoretical Computer Science. LNCS 2731, Berlin: Springer, 2003.11-25.
    [32] Pappu R, Recht B, Taylor J, et al. Physical one-way functions. Science, 2002, 297(5589): 2026-2030.
    [33] Dodis Y, Ostrovsky R, Reuzin L, et al. Fuzzy extractors: How to generate strong keys from biometrics and other noisy data. SIAM Journal of Compute, 2008, 38: 97-139.
    [34] Armknecht F, Maes R, Sadeghi AR, et al. Memory leakage-resilient encryption based on physically unclonable functions. In: Proc. of the 15th Int'l Conf. on the Theory and Application of Cryptology and Information Security. Tokyo, 2009.685-702.
    [35] Vega G, Wolfmann J. New classes of 2-weight cyclic codes. Designs Codes & Cryptography, 2007, 42(3): 327-334.
    [36] Lidl R, Niederreiter H. Finite Fields, Encyclopedia of Mathematics and Its Applications. Vol. 20.2nd ed., Cambridge University Press, 1997.
    附中文参考文献:
    [3] 张艳硕, 李文敬, 陈雷, 毕伟, 杨涛. 基于特征值的可验证特殊门限秘密共享方案. 通信学报, 2018, 39(8): 169-175. [doi: 10.11959/j.issn.1000-436x.2018143]
    [4] 谭振华, 杨广明, 王兴伟, 程维, 宁婧宇. 面向云存储的多维球面门限秘密共享方案. 软件学报, 2016, 27(11): 2912-2928.http://www.jos.org.cn/1000-9825/4943.htm [doi: 10.13328/j.cnki.jos.004943]
    [6] 刘海, 李兴华, 田有亮, 雒彬, 马建峰, 彭长根. 理性公平的秘密共享方案. 计算机学报, 2020, 43(8): 1517-1533.
    引证文献
引用本文

宋云,李志慧,王文华.一般存取结构上抗内存泄露的多级秘密共享.软件学报,2022,33(10):3891-3902

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2020-09-20
  • 最后修改日期:2020-11-12
  • 在线发布日期: 2021-04-21
  • 出版日期: 2022-10-06
文章二维码
您是第19856710位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号