基于深度语义匹配的法律条文推荐方法
作者:
作者简介:

李琳(1977-),女,博士,教授,博士生导师,CCF高级会员,主要研究领域为数据挖掘,推荐系统,信息检索;
周栋(1979-),男,博士,教授,博士生导师,CCF高级会员,主要研究领域为自然语言处理,信息检索;
段围(1994-),男,博士生,主要研究领域为人工智能,自然语言处理;
袁景凌(1975-),女,博士,教授,博士生导师,CCF高级会员,主要研究领域为机器学习,分布式并行处理,智能分析.

通讯作者:

李琳,E-mail:cathylilin@whut.edu.cn

中图分类号:

TP18

基金项目:

国家自然科学基金(61876062)


Law Article Recommendation Approach Based on Deep Semantic Matching
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [41]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    法律条文(简称法条)是司法量刑的主要依据,法律条文的精准推荐,能够辅助提高法律智能判决的质量.目前,主流的法条推荐模型是将有限数量的法条当作类别标签,采用分类的思想,根据法律文书的案例描述将其归类到相关的法条.但是法条作为法律规范的文字表述形式,现有的分类方法简单将其作为类别标签的索引编号,导致对其语义信息利用不足,影响了推荐质量.针对此问题,研究将主流的法条推荐方法从分类模型转化为语义匹配模型,提出了基于深度语义匹配的法条推荐方法(DeepLawRec).该方法包含局部语义匹配模块和全局语义推荐模块,分别设计双向Transformer卷积网络模型和基于回归树的推荐模型,在理解文本序列的同时,关注与法条匹配学习相关的局部语义特征,增强法条推荐的准确率和可解释性.在公开数据集上的实验结果表明,DeepLawRec方法在推荐质量上优于传统的文本分类以及经典的语义匹配方法,并进一步探讨了如何分析和判读推荐结果.

    Abstract:

    Law articles are the main basis of legal judgment and related law article recommendation can improve the quality of legal judgment prediction (LJP). Currently, the state-of-the-art methods belong to supervised classification model with the finite law articles as discrete class labels, which, however, has the downside that the semantic information of law articles may be underused. This observation implies that the quality of law article recommendation can be further enhanced. To solve this problem, this study proposes a deep semantic matching based law article recommendation approach (DeepLawRec) by transforming the traditional classification solution to pairwise matching learning. The proposed DeepLawRec includes local semantic matching module and global semantic recommendation module with a bi-transformer convolutional neural network and regression tree based recommendation, respectively. It can not only extract the key semantic features from the fact descriptions of cases, but also learn their related and local semantic features with a given law article. Moreover, with the help of regression tree, the recommendation results could be interpreted. The experimental results on a public dataset show the proposed DeepLawRec approach can improve the quality of recommendation and outperform the state-of-the-art techniques in terms of precision and interpretability.

    参考文献
    [1] Jiang X, Ye H, Luo Z, et al. Interpretable rationale augmented charge prediction system. In:Proc. of the Int'l Conf. on Computational Linguistics:System Demonstrations. 2018. 146-151.
    [2] Ye H, Jiang X, Luo Z, et al. Interpretable charge predictions for criminal cases:Learning to generate court views from fact descriptions. In:Proc. of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies. 2018. 1854-1864.
    [3] Liu CL, Liao TM. Classifying criminal charges in Chinese for Web-based legal services. In:Proc. of the Asia-Pacific Web Conf. 2005. 64-75.
    [4] Zhang H, Wang X, Wang C, et al. Law article prediction method for legal judgment documents. Computer Science, 2019, 46(9):211-215(in Chinese with English abstract).
    [5] Wang S, Jiang J. A compare-aggregate model for matching text sequences. In:Proc. of the Int'l Conf. on Learning Representations. 2017. https://openreview.net/forum?id=HJTzHtqee
    [6] Feng M, Xiang B, Glass MR, et al. Applying deep learning to answer selection:A study and an open task. In:Proc. of the 2015 IEEE Workshop on Automatic Speech Recognition and Understanding (ASRU). IEEE, 2015. 813-820.
    [7] Liu YH, Chen YL, Ho WL. Predicting associated statutes for legal problems. Information Processing& Management, 2015, 51(1):194-211.
    [8] Kort F. Predicting supreme court decisions mathematically:A quantitative analysis of the"right to counsel"cases. American Political Science Review, 1957, 51(1):1-12.
    [9] Ulmer SS. Quantitative analysis of judicial processes:Some practical and theoretical applications. Law and Contemporary Problems, 1963, 28(1):164-184.
    [10] Nagel SS. Applying correlation analysis to case prediction. Texas Law Review, 1963, 42(7):1006-1017.
    [11] Keown R. Mathematical models for legal prediction. Computer/Law Journal, 1980, 2:829-862.
    [12] Segal JA. Predicting supreme court cases probabilistically:The search and seizure cases, 1962-1981. American Political Science Review, 1984, 78(4):891-900.
    [13] Lauderdale BE, Clark TS. The supreme court's many median justices. American Political Science Review, 2012, 106(4):847-866.
    [14] Liu CL, Hsieh CD. Exploring phrase-based classification of judicial documents for criminal charges in Chinese. In:Proc. of the Int'l Symp. on Methodologies for Intelligent Systems. 2006. 681-690.
    [15] Lin WC, Kuo TT, Chang TJ, et al. Exploiting machine learning models for Chinese legal documents labeling, case classification, and sentencing prediction. Int'l Journal of Computational Linguistics& Chinese Language Processing, 2012, 17(4):40-68.
    [16] Aletras N, Tsarapatsanis D, Preoţiuc-Pietro D, Lampos V. Predicting judicial decisions of the European court of Human rights:A natural language processing perspective. PeerJ Computer Science, 2016, 2:No.e93. https://doi.org/10.7717/peerj-cs.93
    [17] Sulea OM, Zampieri M, Malmasi S, et al. Exploring the use of text classification in the legal domain. arXiv:1710. 09306, 2017.
    [18] Zhang Y, Wallace B. A sensitivity analysis of (and practitioners'guide to) convolutional neural networks for sentence classification. In:Proc. of the Int'l Joint Conf. on Natural Language Processing. 2017. 253-263.
    [19] Khan A, Baharudin B, Lee LH, et al. A review of machine learning algorithms for text-documents classification. Journal of Advances in Information Technology, 2010, 1(1):4-20.
    [20] Tang D, Qin B, Liu T. Document modeling with gated recurrent neural network for sentiment classification. In:Proc. of the Empirical Methods in Natural Language Processing. 2015. 1422-1432.
    [21] Luo B, Feng Y, Xu J, et al. Learning to predict charges for criminal cases with legal basis. In:Proc. of the Empirical Methods in Natural Language Processing. 2017. 2727-2736.
    [22] Long SB, Tu CC, Liu ZY, Sun MS. Automatic judgment prediction via legal reading comprehension. In:Proc. of the CCL 2019. 2019. 558-572.
    [23] Chen S, Qin J, Ji X, et al. Automatic scoring of multiple semantic attributes with multi-task feature leverage:A study on pulmonary nodules in CT images. IEEE Trans. on Medical Imaging, 2016, 36(3):802-814.
    [24] Li S, Zhao Z, Hu RF, et al. Analogical reasoning on Chinese morphological and semantic relations. In:Proc. of the 56th Annual Meeting of the Association for Computational Linguistics. 2018. 138-143.
    [25] Hu Z, Li X, Tu C, et al. Few-shot charge prediction with discriminative legal attributes. In:Proc. of the Int'l Conf. on Computational Linguistics. 2018. 487-498.
    [26] Zhong H, Xiao C, Guo Z, et al. Overview of CAIL2018:Legal judgment prediction competition. arXiv:1810.05851, 2018.
    [27] Xiao C, Zhong H, Guo Z, et al. CAIL2018:A large-scale legal dataset for judgment prediction. arXiv:1807.02478, 2018.
    [28] Kim Y. Convolutional neural networks for sentence classification. In:Proc. of the 2014 Conf. on Empirical Methods in Natural Language Processing (EMNLP). 2014. 1746-1751.
    [29] Sepp Hochreiter and Jurgen Schmidhuber. Long short-term memory. Neural Computation, 1997, 9(8):1735-1780.
    [30] Cho K, Van Merriënboer B, Gulcehre C, et al. Learning phrase representations using RNN encoder-decoder for statistical machine translation. In:Proc. of the Empirical Methods in Natural Language Processing. 2014. 1724-1734.
    [31] Luo B, Feng Y, Xu J, et al. Learning to predict charges for criminal cases with legal basis. In:Proc. of the Empirical Methods in Natural Language Processing. 2017. 2727-2736.
    [32] Yang WM, Jia WJ, Zhou XJ, Luo YT. Legal judgment prediction via multi-perspective bi-feedback network. In:Proc. of the IJCAI 2019. 2019. 4085-4091.
    [33] Xu N, Wang PH, Chen L, Pan L, Wang XY, Zhao ZJ. Distinguish confusing law articles for legal judgment prediction. In:Proc. of the ACL 2020. 2020. 3086-3095.
    [34] Radford A, Narasimhan K, Salimans T, et al. Improving language understanding by generative pre-training. 2018. https://www.gwern.net/docs/www/s3-us-west-2.amazonaws.com/d73fdc5ffa8627bce44dcda2fc012da638ffb158.pdf
    [35] Devlin J, Chang MW, Lee K, et al. Bert:Pre-training of deep bidirectional transformers for language understanding. In:Proc. of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies. 2018. 4171-4186.
    [36] Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need. In:Advances in Neural Information Processing Systems. 2017. 5998-6008.
    [37] Liu Y, Ott M, Goyal N, et al. RoBERTa:A robustly optimized BERT pretraining approach. arXiv:1907.11692, 2019.
    [38] Duan W. Intelligent judgment prediction for legal text[MS. Thesis]. Wuhan:Wuhan University of Technology, 2020(in Chinese with English abstract).
    附中文参考文献:
    [4] 张虎,王鑫,王冲,等.面向法律裁判文书的法条推荐方法.计算机科学, 2019, 46(9):211-215.
    [38] 段围.面向法律文本的智能判决预测方法研究[硕士学位论文].武汉:武汉理工大学, 2020.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

李琳,段围,周栋,袁景凌.基于深度语义匹配的法律条文推荐方法.软件学报,2022,33(7):2618-2632

复制
分享
文章指标
  • 点击次数:1079
  • 下载次数: 2755
  • HTML阅读次数: 1615
  • 引用次数: 0
历史
  • 收稿日期:2020-07-27
  • 最后修改日期:2020-09-30
  • 在线发布日期: 2022-07-16
  • 出版日期: 2022-07-06
文章二维码
您是第20055496位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号