基于事件关系保障识别质量的自适应分析方法
作者:
作者简介:

王璐(1991-),女,博士,讲师,CCF专业会员,主要研究领域为软件演化与自适应,智能化软件运维.
张河(1997-),女,硕士,主要研究领域为软件自适应,事件识别技术.
李青山(1973-),男,博士,博士生导师,CCF高级会员,主要研究领域为面向智能体的软件工程,软件演化与自适应.
李昊(1996-),男,硕士,主要研究领域为自适应软件,软件演化,智能化软件开发.
吕文琪(1996-),女,硕士,主要研究领域为软件自适应,自适应感知方法,智能化软件开发.

通讯作者:

李青山,E-mail:qshli@mail.xidian.edu.cn

基金项目:

国家自然科学基金青年科学基金(61902288);国家自然科学基金(61672401,61972300);陕西省自然科学基础研究计划(2020JQ-300)


Self-adaptation Analysis Method for Recognition Quality Assurance Using Event Relationships
Author:
Fund Project:

Youth Science Foundation of the National Natural Science Foundation of China (61902288); Foundation item:National Natural Science Foundation of China (61672401, 61972300); Basic Research Program of Natural Science of Shaanxi (2020JQ-300)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [51]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    目前自适应软件正在为众多领域系统提供着对运行环境的适应能力.如何建立一种能够保障识别质量的自适应分析方法,使之可从运行环境中快速且准确地识别出异常事件,是确保自适应软件长期稳定运行所必须考虑的研究问题之一.当前运行环境的不确定性给该问题的攻关带来两方面的挑战:其一,现有分析方法一般通过预先建立环境状态与事件之间的映射关系来识别事件.但在系统运行之前,已无法仅凭经验确定环境状态并建立全面且正确的映射关系.仅依赖映射关系建立分析方法的设计思路已无法保障识别的准确性.其二,不确定环境何时会发生何种事件已变得不可预期.如果采用现有设计思路,定期地获取环境状态再进行事件识别,则无法保障识别效率.然而,目前却缺乏应对这些紧迫挑战的相关工作,因此提出了一种基于事件关系保障识别质量的自适应分析方法(self-adaptation analysis method for recognition quality assurance using event relationships,简称SAFER).SAFER采用序列模式挖掘算法、模糊故障树与贝叶斯网络等技术抽取并建模事件因果关系,并基于该类关系与映射关系通过贝叶斯网络的正向推理能力共同识别事件,与传统的仅依赖映射关系的识别方法相比可保证识别的准确性;基于贝叶斯网络的反向推理能力,确定易引发事件的精英感知对象,并动态调整获取精英感知对象状态数据的采样周期,以便于在事件发生后尽快获得相关环境状态,从而保障识别效率.实验结果表明,在自适应软件实际运行过程中,SAFER可实现对事件的识别并保障识别准确性与识别效率,为自适应软件稳定运行提供了有效支持.

    Abstract:

    At present, self-adaptive software is providing the ability to adapt to the operating environment for many systems in different fields.How to establish a self-adaptation analysis method which can recognize abnormal events at runtime quickly and achieve the recognition quality assurance, is one of the research issues that must be considered to ensure the long-term stable operation of the self-adaptive software. The uncertainty of the runtime environment brings two challenges to this problem. On the one hand, the analysis method usually recognizes the events by pre-establishing the mapping relationships between the environment state and the events. However, due to the complexity of the operating environment and the unknown changes, it is impossible to establish comprehensive and correct mapping relationships based on experience before the system is running, which affect the accuracy of event recognition; On the other hand, the changing operating environment makes it impossible to accurately predict when and which event will occur. If the current way is used to obtain the environmental status using constant sensing period and recognize events, then the recognition efficiency cannot be guaranteed. However, it is still blank about how to deal with these urgent challenges. Therefore, this study proposes a self-adaptation analysis method for recognition of quality assurance using event relationships (SAFER). SAFER uses sequential pattern mining algorithm, fuzzy fault tree (FFT), and Bayesian network (BN) to extract and model the causalities between events. This study uses the event causal relationships and mapping relationships to recognize events through the BN forward reasoning, which can ensure the accuracy of recognition compared with the traditional analysis methods that only rely on mapping relationships. Moreover, this study establishes the elitist set of monitoring objects through the BN backward reasoning, then modifies the sensing period of monitoring objects in elitist set dynamically in order to obtain the environmental status as soon as possible after the abnormal events occurred, so as to ensure the efficiency of recognition. The experimental results show that SAFER can effectively improve the accuracy and efficiency of the analysis process, and support long-term stable operation of self-adaptive software.

    参考文献
    [1] Krupitzer C, Roth FM, Vansyckel S, Schiele G, Becker C. A survey on engineering approaches for self-adaptive systems. Pervasive & Mobile Computing, 2015,17:184-206.[doi:10.1016/j.pmcj.2014.09.009]
    [2] Salehie M, Tahvildari L. Self-adaptive software:Landscape and research challenges. ACM Trans. on Autonomous and Adaptive Systems (TAAS 2009), 2009,4(2):1-42.[doi:10.1145/1516533.1516538]
    [3] Luckey M, Engels G. High-quality specification of self-adaptive software systems. In:Proc. of the 8th Int'l Symp. on Software Engineering for Adaptive and Self-Managing Systems (SEAMS 2013). San Francisco, 2013. 143-152.
    [4] Zimmermann M, Wotawa F. An adaptive system for autonomous driving. Software Quality Journal, 2020,28(3):1189-1212.[doi:10.1007/s11219-020-09519-w]
    [5] Luckey M, Thanos C, Gerth C, Engels G. Multi-staged quality assurance for self-adaptive systems. In:Proc. of the 6th Int'l Conf. on Self-adaptive & Self-organizing Systems Workshops. IEEE, 2012. 111-118.[doi:10.1109/SASOW.2012.28]
    [6] Gabor T, Kiermeier M, Sedlmeier A, Kempter B, Klein C, Sauer H, Schmid R, Wieghardt J. Adapting quality assurance to adaptive systems:The scenario coevolution paradigm. In:Proc. of the Int'l Symp. on Leveraging Applications of Formal Methods (ISOLA 2018). Cham:Springer-Verlag, 2018. 137-157.[doi:10.1007/978-3-030-03424-5_10]
    [7] Wang ZY, Wang T, Zhang WB, Chen NJ, Zuo C. Fault diagnosis for microservices with execution trace monitoring. Ruan Jian Xue Bao/Journal of Software, 2017,28(6):1435-1454(in Chinese with English abstract). http://www.jos.org.cn/1000-9825/5223.htm[doi:10.13328/j.cnki.jos.005223]
    [8] Macias-Escriva FD, Haber R, Toro RD, Hernandez V. Self-adaptive systems:A survey of current approaches, research challenges and applications. Expert Systems with Applications, 2013,40(18):7267-7279.[doi:10.1016/j.eswa.2013.07.033]
    [9] Rodrigues A, Vogel T, Pelliccione P. A learning approach to enhance assurances for real-time self-adaptive systems. In:Proc. of the 13th Int'l Symp. on Software Engineering for Adaptive and Self-managing Systems. ACM, 2018. 206-216.[doi:10.1145/3194133. 3194147]
    [10] Chaari T, Fakhfakh K. Semantic modeling and reasoning at runtime for autonomous systems engineering. In:Proc. of the 9th Int'l Conf. on Ubiquitous Intelligence and Computing and the 9th Int'l Conf. on Autonomic and Trusted Computing. IEEE, 2012. 415-422.[doi:10.1109/UIC-ATC.2012.82]
    [11] Baader F. Ontology-based monitoring of dynamic systems. In:Proc. of the 14th Int'l Conf. on the Principles of Knowledge Representation and Reasoning. AAAI Publications, 2014. 678-681.
    [12] Paola AD. An ontology-based autonomic system for ambient intelligence scenarios. In:Proc. of the Advances onto the Internet of Things. Switzerland:Springer International Publishing, 2014. 1-17.[doi:10.1007/978-3-319-03992-3_1]
    [13] Yang QL, Lü J, Li JL, Ma XX, Song W, Zou Y. Toward a fuzzy control-based approach to design of self-adaptive software. In:Proc. of the 2nd Asia-Pacific Symp. on Internetware. 2010. 1-4.[doi:10.1145/2020723.2020738]
    [14] Wang T, Zhang WB, Xu JW, Wei J, Zhong H. A survey of fault detection for distributed software systems with statistical monitoring in cloud computing. Chinese Journal of Computers, 2017, 397-413(in Chinese with English abstract).[doi:10.11897/SP.J.1016.2017.00397]
    [15] Zhang J, Qi MC, Li B. Hybrid diagnosis of fault tree and Bayesian network in BIW automatic welding production line. In:Proc. of the Advanced Information Management, Communicates, Electronic & Automation Control Conf. IEEE, 2016. 297-300.[doi:10. 1109/IMCEC.2016.7867220]
    [16] Chen HX, Ren Y, Yu SX. Fuzzy fault tree analysis on temperature control system of conventional rocket propellant. Yuhang Xuebao/Journal of Astronautics, 2017,38(1):104-108(in Chinese with English abstract).[doi:10.3873/j.issn.1000-1328.2017. 01.014]
    [17] Astekin M, Zengin H, Sözer H. DILAF:A framework for distributed analysis of large-scale system logs for anomaly detection. Software:Practice and Experience, 2019,49(2):153-170.[doi:10.1002/spe.2653]
    [18] He S, Lin Q, Lou JG, Zhang H, Zhang D. Identifying impactful service system problems via log analysis. In:Proc. of the 26th ACM Joint Meeting. ACM, 2018. 60-70.[doi:10.1145/3236024.3236083]
    [19] Li ZF, Pang HJ. Study on improved genetic algorithm based real-time detection system of network failure data. Modern Electronics Technique, 2018,41(13):138-141,146(in Chinese with English abstract).[doi:10.16652/j.issn.1004-373x.2018.13.031]
    [20] Qu CY, Liu XQ, Xin P. Substation equipment failure state identify and prediction model based on hadoop. Software Guide, 2015(3):61-63(in Chinese with English abstract).[doi:10.11907/rjdk.1431012]
    [21] Huang XD, Wang BY, Liu K, Liu TG. An event recognition scheme aiming to improve both accuracy and efficiency in optical fiber perimeter security system. Journal of Lightwave Technology, 2020,38(20):5783-5790.
    [22] Yang YY. Automatic fault diagnosis approach based on similarity graph in cloud computing. Computer Measurement & Control. 2014,22(12):3877-3880(in Chinese with English abstract).[doi:10.3969/j.issn.1671-4598.2014.12.011]
    [23] Shevtsov S, Berekmeri M, Weyns D, Maggio M. Control-theoretical software adaptation:A systematic literature review. IEEE Trans. on Software Engineering, 2018,44(8):784-810.[doi:10.1109/TSE.2017.2704579]
    [24] Ju AK, Guo YB, Zhu TM, Wang T. Survey on network security event correlation analysis methods and tools. Computer Science, 2017,44(2):38-45(in Chinese with English abstract).
    [25] Jing L, Gu L, Xu GS, Niu XX. A correlation analysis method of network security events based on rough set theory. In:Proc. of the Int'l Conf. on Network Infrastructure & Digital Content. IEEE, 2013. 517-520.[doi:10.1109/ICNIDC.2012.6418807]
    [26] Zhu B, Ghorbani AA. Alert correlation for extracting attack strategies. Int'l Journal of Network Security, 2006,3(3):244-258.
    [27] Massie ML, Chun BN, Culler DE. The ganglia distributed monitoring system:Design, implementation, and experience. Parallel Computing, 2004,30(7):817-840.[doi:10.1016/j.parco.2004.04.001]
    [28] Wang JM, Wu JH. Research on performance automation testing technology based on JMeter. In:Proc. of the 2019 Int'l Conf. on Robots & Intelligent System (ICRIS 2019). IEEE, 2019. 55-58.[doi:10.1109/ICRIS.2019.00023]
    [29] Povedano-Molina J, Lopez-Vega JM, Lopez-Soler JM, Corradi A, Foschini L. DARGOS:A highly adaptable and scalable monitoring architecture for multi-tenant Clouds. Future Generation Computer Systems, 2013,29(8):2041-2056.[doi:10.1016/j. future.2013.04.022]
    [30] Han DS, Xing JC, Yang QL, LI JL. Modeling and verification approach for temporal properties of self-adaptive software dynamic processes. Journal of Computer Applications, 2018(3):799-805(in Chinese with English abstract).
    [31] Xu LK, Li JL, Zhu Z, Chen HP, Wang L. Research on pattern mining of alarm sequence based on network and time constraints. Computer & Digital Engineering, 2019,47(9):2364-2368(in Chinese with English abstract).
    [32] Hamza Z, Abdallah T. Mapping fault tree into Bayesian network in safety analysis of process system. In:Proc. of the 4th Int'l Conf. on Electrical Engineering (ICEE 2015). IEEE, 2015. 1-5.
    [33] Trihinas D, Pallis G, Dikaiakos M. Monitoring elastically adaptive multi-cloud services. IEEE Trans. on Cloud Computing, 2015, 6(3):1.[doi:10.1109/TCC.2015.2511760]
    [34] Ge JW, Zhang B, Fang YQ. Study on resource monitoring model in cloud computing environment. Computer Engineering, 2011, 37(11):31-33(in Chinese with English abstract).[doi:10.3969/j.issn.1000-3428.2011.11.011]
    [35] Zhang X, Ying S, Zhang T. Collection and service processing framework of application running log. Computer Engineering and Applications, 2018,54(10):81-89,142(in Chinese with English abstract).
    [36] Wang R, Ying S, Sun CG, Wan HY, Zhang HL, Jia XY. Model construction and data management of running log in supporting SAAS software performance analysis. In:Proc. of the 29th Int'l Conf. on Software Engineering and Knowledge Engineering. 2017. 149-154.[doi:10.18293/SEKE2017-128]
    [37] Wang L. Software adaptation mechanism based on multi-agent theory and parallel search[Ph.D. Thesis]. Xi'an:University of Xidian, 2019(in Chinese with English abstract).
    [38] Zhang H, Li QS, Wang L, Cheng W. Self-adaptive software changes analysis method based on "Detection-Recognition" mechanism. In:Proc. of the 31st Int'l Conf. on Software Engineering & Knowledge Engineering (SEKE 2019). 2019. 287-290.[doi:10.18293/SEKE2019-049]
    附中文参考文献:
    [7] 王子勇,王焘,张文博,陈宁江,左春.一种基于执行轨迹监测的微服务故障诊断方法.软件学报,2017,28(6):1435-1454. http://www.jos.org.cn/1000-9825/5223.htm[doi:10.13328/j.cnki.jos.005223]
    [14] 王焘,张文博,徐继伟,魏峻,钟华.云环境下基于统计监测的分布式软件系统故障检测技术研究.计算机学报,2017,40(2):397-413.
    [16] 陈慧星,任艳,俞少行.运载火箭常规燃料调温系统模糊故障树研究.宇航学报,2017,38(1):104-108.
    [19] 李正芳,庞海杰.基于改进遗传算法的网络故障数据实时检测系统研究.现代电子技术,2018,41(13):138-141,146.[doi:10.16652/j.issn.1004-373x.2018.13. 031]
    [20] 曲朝阳,刘晓庆,辛鹏.基于Hadoop的变电站设备故障状态识别与预测模型.软件导刊,2015(3):61-63.
    [22] 杨艳燕.云计算中基于相似性图的故障自动诊断方法.计算机测量与控制,2014,22(12):3877-3880.
    [24] 琚安康,郭渊博,朱泰铭,王通.网络安全事件关联分析技术与工具研究.计算机科学,2017,44(2):38-45.
    [30] 韩德帅,邢建春,杨启亮,李决龙.自适应软件动态过程时间特性建模与验证方法.计算机应用,2018(3):799-805.
    [31] 徐立坤,李建路,朱珠,陈海平,王林.基于网络和时间约束的告警序列模式挖掘研究.计算机与数字工程,2019,47(9):2364-2368.
    [34] 葛君伟,张博,方义秋.云计算环境下的资源监测模型研究.计算机工程,2011,37(11):31-33.
    [35] 张骁,应时,张韬.应用软件运行日志的收集与服务处理框架.计算机工程与应用,2018,54(10):81-89,142.
    [37] 王璐.基于多智能体并行搜索的软件自适应机制[博士学位论文].西安:西安电子科技大学,2019.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

王璐,李青山,吕文琪,张河,李昊.基于事件关系保障识别质量的自适应分析方法.软件学报,2021,32(7):1978-1998

复制
分享
文章指标
  • 点击次数:2162
  • 下载次数: 5758
  • HTML阅读次数: 3754
  • 引用次数: 0
历史
  • 收稿日期:2020-09-15
  • 最后修改日期:2020-10-26
  • 在线发布日期: 2021-01-22
  • 出版日期: 2021-07-06
文章二维码
您是第19894266位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号