个体交互行为的平滑干预模型
作者:
作者简介:

刘霄(1995-),男,硕士,主要研究领域为交互行为异常检测.
魏子明(1995-),男,硕士,主要研究领域为交互行为异常检测.
章昭辉(1971-),男,博士,教授,博士生导师,CCF专业会员,主要研究领域为大数据,行为分析.
王鹏伟(1984-),男,博士,副教授,CCF专业会员,主要研究领域为云计算与边缘计算,服务计算,数据挖掘与分析.

通讯作者:

章昭辉,zhzhang@dhu.edu.cn

基金项目:

上海市自然科学基金(19ZR1401900);上海市科技创新行动计划(19511101302);国家自然科学基金(61472004,61602109)


Smooth Intervention Model of Individual Interaction Behavior
Author:
Fund Project:

Natural Science Foundation of Shanghai (19ZR1401900); Shanghai Science and Technology Innovation Action Plan High-Tech Field Project (19511101302); National Natural Science Foundation of China (61472004, 61602109)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [29]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    基于交互行为的用户特征提取和身份认证方法是一种重要的身份识别方式,但高频用户的交互行为模式和操作习惯相对稳定,易被欺诈者模仿,使得现有模型对此类欺诈行为的误判较高.如何使得用户行为主动平滑变化且可区分,成为解决上述问题的关键.针对此问题,提出一种基于个体交互行为系统平滑干预模型:首先,根据用户历史交互行为日志从多个维度得到用户的交互行为变化趋势;然后,结合行为的稳定性和偏向性提出行为时域漂移算法(TDDA),为每个用户确定行为引导的时机;最后,基于Petri网提出交互行为重构系统干预模型,在系统中的非关键路径叠加行为触发因素,引导用户产生新的交互行为习惯.实验证明了提出的方法能够很好地引导用户行为平滑变化,且产生足够的区分性,使得行为伪装异常检测场景下模型的准确性显著提高.

    Abstract:

    User feature extraction and identity authentication methods based on interactive behavior are an important method of identity recognition. However, for high-frequency users, the interactive behavior patterns and operating habits are relatively stable, which are easily imitated by fraudsters and making the existing models have a higher misjudgment. The key point to solve the above problems is to make the user's behavior change smoothly and distinguishably. This study proposes a smooth intervention model based on an individual interactive behavior system to handle it. Firstly, according to the user history web behavior log, the change trend of user interaction behavior is obtained from multiple dimensions. Then, combined with the stability and deviation of the behavior, the time-domain drift algorithm (TDDA) is proposed to determine the behavior guidance time of each user. Finally, an intervention model for interactive behavior reconstruction systems is proposed, which superimposes behavior trigger factors on non-critical paths in the system to guide users generating new interactive behavior habits. Experiments prove that the method proposed in this study could guide the user's behavior to change smoothly and produce sufficient distinction to significantly advance the model accuracy in the scenario of behavior camouflage anomaly detection.

    参考文献
    [1] China Information and Communication Research Institute. Mobile Digital Finance and Electronic Commerce Anti-fraud White Paper (in Chinese).
    [2] Aiken LR. Attitude and Behavior. Beijing:China Light Industry Press, 2008(in Chinese).
    [3] Nenadic A, Zhang N, Barton S. A security protocol for certified e-goods delivery. In:Proc. of the Int'l Conf. on Information Technology:Coding and Computing (ITCC 2004), 2004. 22-28.
    [4] Zhong J, Yan C, Yu W. et al. A kind of identity authentication method based on browsing behaviors. In:Proc. of the 20147th Int'l Symp. on Computational Intelligence and Design. 2014. 279-284.
    [5] Zhao P, Yan C, Jiang C. Authenticating Web user's identity through browsing sequences modeling. In:Proc. of the 2016 IEEE 16th Int'l Conf. on Data Mining Workshops (ICDMW). 2016. 335-342.
    [6] Roth J, Liu X, Metaxas D. On continuous user authentication via typing behavior. IEEE Trans. on Image Processing, 2014,23(10):4611-4624.
    [7] Ma L, Yan C, Zhao P, et al. A kind of mouse behavior authentication method on dynamic soft keyboard. In:Proc. of the 2016 IEEE Int'l Conf. on Systems, Man, and Cybernetics (SMC). IEEE, 2016.
    [8] Liu C, He J. Access control to Web pages based on user browsing behavior. In:Proc. of the 2017 IEEE 9th Int'l Conf. on Communication Software and Networks (ICCSN). 2017. 1016-1020.
    [9] Zhao P, Yan C, Jiang C. Authenticating Web user's identity through browsing sequences modeling. In:Proc. of the 2016 IEEE 16th Int'l Conf. on Data Mining Workshops (ICDMW). 2016. 335-342.
    [10] Zheng L, Liu G, Yan C, Jiang C. Transaction fraud detection based on total order relation and behavior diversity. IEEE Trans. on Computational Social Systems, 2018:796-806.
    [11] Zheng L, et al. A new credit card fraud detecting method based on behavior certificate. In:Proc. of the 2018 IEEE 15th Int'l Conf. on Networking, Sensing and Control (ICNSC). 2018. 1-6.
    [12] Chen D, Ding Z, Yan C, et al. A behavioral authentication method for mobile based on browsing behaviors. In:Proc. of the Institute of Electrical and Electronics Engineers Inc. 2019.
    [13] Zhong J, Yan C, Yu W, Zhao P, Wang M. A kind of identity authentication method based on browsing behaviors. In:Proc. of the 20147th Int'l Symp. on Computational Intelligence and Design. 2014. 279-284.
    [14] Zhang Y, Chen G. A forensics method of Web browsing behavior based on association rule mining. In:Proc. of the 20142nd Int'l Conf. on Systems and Informatics (ICSAI 2014). 2014. 927-932.
    [15] Liu GJ, Jiang CJ. Behavioral equivalence of security-oriented interactive systems. IEICE Trans. on Information and Systems, 2016,E99-D:2061-2068.
    [16] Liu GJ, Jiang CJ. Secure bisimulation for interactive systems. In:Proc. of the 15th ICA3PP. LNCS 9530. 2015. 625-639.
    [17] Zhang Z, Chen L, Liu Q, et al. A fraud detection method for low-frequency Trans. IEEE Access, 2020:25210-25220.
    [18] Toledo FPD, Devincenzi S, Kwecko V, Mota FP, Botelho SSDC. A framework for modeling persuasive technologies based on the fogg behavior model. In:Proc. of the 2018 IEEE Frontiers Education Conf. (FIE). 2018. 1-5.
    [19] Hamper A, Wendt J, Zagel C, et al, Behavior change support for physical activity promotion:A theoretical view on mobile health and fitness applications. In:Proc. of the 201649th Hawaii Int'l Conf. on System Sciences (HICSS). 2016. 3349-3358.
    [20] Nishiyama Y, Okoshi T, Yonezawa T, et al. Toward health exercise behavior change for teams using lifelog sharing models. IEEE Journal of Biomedical and Health Informatics, 2016,775-786.
    [21] Zhang Z, Arakawa Y, Oinas-kukkonen H. Design of behavior change environment with interactive signage having active talk function. In:Proc. of the 2019 IEEE Int'l Conf. on Pervasive Computing and Communications Workshops (PerCom Workshops). Kyoto, 2019. 796-801.
    [22] Zhang ZH, Cui J. An agile perception method for behavior abnormality large-scale network service systems. Chinese Journal of Computers, 2017,40(2):505-519(in Chinese with English abstract).
    [23] Pan L, Ma B, Wang Y. The similarity calculation of E-commerce user behaviors with Petri net. 2017.
    [24] Weidlich M. Behavioural profiles:A relational approach to behaviour consistency. Journal of Biological Chemistry, 2011,269(36):22847-22852.
    [25] Chen L, Zhang ZH, Liu QW, et al. A method for online transaction fraud detection based on individual behavior. In:Proc. of the ACM Turing Celebration Conf.-China. ACM, 2019. 119.
    附中文参考文献:
    [1] 移动数字金融与电子商务及欺诈白皮书,2019..
    [2] 态度与行为.北京:中国轻工业出版社,2008.
    [22] 章昭辉,崔君.大规模网络服务系统行为异常的敏捷感知方法.计算机学报,2017,40(2):505-519.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

刘霄,章昭辉,魏子明,王鹏伟.个体交互行为的平滑干预模型.软件学报,2021,32(6):1733-1747

复制
分享
文章指标
  • 点击次数:1831
  • 下载次数: 5089
  • HTML阅读次数: 3107
  • 引用次数: 0
历史
  • 收稿日期:2020-08-30
  • 最后修改日期:2020-10-26
  • 在线发布日期: 2021-02-07
  • 出版日期: 2021-06-06
文章二维码
您是第19731757位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号