时空轨迹数据驱动的自动驾驶场景元建模方法
作者:
作者简介:

张梦寒(1997-),女,硕士,CCF学生会员,主要研究领域为安全攸关场景建模.
杜德慧(1979-),女,博士,教授,博士生导师,CCF专业会员,主要研究领域为可信软件,信息物理融合系统建模与验证,人工智能安全可信理论及验证.
张铭茁(1997-),男,硕士,CCF学生会员,主要研究领域为可信软件.
张雷(1978-),男,博士,教授,博士生导师,CCF高级会员,主要研究领域为信息物理融合与数据智能应用.
王耀(1995-),男,硕士,CCF学生会员,主要研究领域为可信软件.
周文韬(1995-),男,硕士,主要研究领域为可信软件.

通讯作者:

杜德慧,E-mail:dhdu@sei.ecnu.edu.cn

中图分类号:

TP311

基金项目:

国家自然科学基金(61972153);国家重点研发计划(2018YFE0101000);科技部重点项目(2020AAA0107800)


Spatio-temporal Trajectory Data-driven Autonomous Driving Scenario Meta-modeling Approach
Author:
  • ZHANG Meng-Han

    ZHANG Meng-Han

    Software Engineering Institute, East China Normal University, Shanghai 200062, China;Shanghai Key Laboratory of Trustworthy Computing (East China Normal University), Shanghai 200062, China;International Joint Laboratory of Trustworthy Software of Ministry of Education (East China Normal University), Shanghai 200062, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • DU De-Hui

    DU De-Hui

    Software Engineering Institute, East China Normal University, Shanghai 200062, China;Shanghai Key Laboratory of Trustworthy Computing (East China Normal University), Shanghai 200062, China;International Joint Laboratory of Trustworthy Software of Ministry of Education (East China Normal University), Shanghai 200062, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • ZHANG Ming-Zhuo

    ZHANG Ming-Zhuo

    Software Engineering Institute, East China Normal University, Shanghai 200062, China;Shanghai Key Laboratory of Trustworthy Computing (East China Normal University), Shanghai 200062, China;International Joint Laboratory of Trustworthy Software of Ministry of Education (East China Normal University), Shanghai 200062, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • ZHANG Lei

    ZHANG Lei

    Shanghai Research Institute for Intelligent Autonomous Systems, Tongji University, Shanghai 201210, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • WANG Yao

    WANG Yao

    Software Engineering Institute, East China Normal University, Shanghai 200062, China;Shanghai Key Laboratory of Trustworthy Computing (East China Normal University), Shanghai 200062, China;International Joint Laboratory of Trustworthy Software of Ministry of Education (East China Normal University), Shanghai 200062, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • ZHOU Wen-Tao

    ZHOU Wen-Tao

    Software Engineering Institute, East China Normal University, Shanghai 200062, China;Shanghai Key Laboratory of Trustworthy Computing (East China Normal University), Shanghai 200062, China;International Joint Laboratory of Trustworthy Software of Ministry of Education (East China Normal University), Shanghai 200062, China
    在期刊界中查找
    在百度中查找
    在本站中查找
Fund Project:

National Natural Science Foundation of China (61972153); National Key R&D Program of China (2018YFE 0101000); Key Projects of the Ministry of Science and Technology (2020AAA0107800)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [61]
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    时空轨迹数据驱动的汽车自动驾驶场景建模,是当前汽车自动驾驶领域中驾驶场景建模、仿真所面临的关键问题,对于提高系统的安全性具有重要的研究意义.近年来,随着时空轨迹数据建模及应用研究的快速发展,时空轨迹数据应用于特定领域建模的研究引起人们的广泛关注.但是,由于时空轨迹数据所反映的现实世界的多元性和复杂性以及时空轨迹数据的海量、异构、动态等特点,基于时空轨迹数据驱动的安全攸关场景建模的研究仍面临着挑战,包括:统一的时空轨迹数据元模型、基于时空轨迹数据的元建模方法、基于数据分析技术的时空轨迹数据处理、数据质量评价等.针对汽车自动驾驶领域的场景建模需求,提出一种基于MOF元建模体系构建时空轨迹数据的元建模方法,根据时空轨迹数据的特征及自动驾驶的领域知识,构建了面向汽车自动驾驶的时空轨迹数据元模型;基于此,提出基于时空轨迹数据元建模技术体系的自动驾驶安全场景建模方法,并使用场景建模语言ADSML实例化安全场景,构建安全场景库,旨在为此类系统的安全关键场景建模提供一种可行的方案.结合变道超车场景的案例,展示了时空轨迹数据驱动的自动驾驶安全场景元建模方法的可用性,为场景模型的构建、仿真、分析奠定了基础.

    Abstract:

    In the current autonomous driving scenario modeling and simulation field, spatio-temporal trajectory data-driven modeling and application of autonomous driving safety-critical scenario are key problems, which is significant to improve the security of the system. In recent years, great progress has been achieved in the modeling and application of spatio-temporal trajectory data, and the application of spatio-temporal trajectory data in specific fields has attracted wide attention. However, due to spatio-temporal trajectory data has diversity and complexity as well as massive, heterogeneous, dynamic characteristics, researches in the safety-critical field modeling still face challenges, including unified meta-data of spatio-temporal trajectory, meta-modeling method based on spatio-temporal trajectory data, data processing based on the data analysis of spatio-temporal trajectory, and data quality evaluation. In view of the scenario modeling requirements in the field of autonomous driving, a meta-modeling approach is proposed to construct spatio-temporal trajectory meta-data based on MOF meta-modeling system. According to the characteristics of spatio-temporal trajectory data and autonomous driving domain knowledge, a meta-model of spatio-temporal trajectory data is constructed. Then, the modeling approach of autonomous driving safety-critical scenarios is studied based on spatio-temporal trajectory data element modeling technology system, a scenario modeling language ADSML is used to automatic instantiation safety-critical scenarios, and a library of safety-critical scenarios is constructed, aiming to provide a feasible approach for the modeling of such safety-critical scenarios. Combined with the scenario of lane change and overtaking, the effectiveness of spatio-temporal trajectory data-driven autonomous driving safety-critical scenario meta-modeling approach is demonstrated, which lays a solid foundation for the construction, simulation, and analysis of the scene model.

    参考文献
    [1] Yao D, Zhang C, Huang JH, Chen YX, Bi JP. Semantic understanding of spatio-temporal data:Technology & application. Ruan Jian Xue Bao/Journal of Software, 2018,29(7):2018-2045(in Chinese with English abstract). http://www.jos.org.cn/1000-9825/5576.htm[doi:10.13328/j.cnki.jos.005576]
    [2] Zhang L, Zhang CX, Du DH, Liu B, Tian B, Yuan Q. Constraint expression method of spatial information and spatial big data. Shangha, CN110532341B, 2020-11-03(in Chinese).
    [3] Zhang L, Zhang CX, Du DH, Liu B, Tian B, Yuan Q. Spatial information spatial metadata construction metho. Shanghai, CN110532340A, 2019-12-03(in Chinese).
    [4] Tesla accident (in Chinese). https://36kr.com/p/871536866489736
    [5] Nidhi K, Paddock SM. Driving to safety:How many miles of driving would it take to demonstrate autonomous vehicle reliability. Technical Report, Santa Monica:RAND Corporation, 2016. https://www.rand.org/pubs/research_reports/RR1478.html
    [6] Zhu B, Zhang PX, Zhao J, Chen H, Xu ZG, Zhao XM, Deng WW. Review of scenario-based virtual validation methods for automated vehicles. China Journal of Highway and Transport, 2019,32(6):1-19(in Chinese with English abstract).
    [7] de Gelder E, Paardekooper JP. Assessment of automated driving systems using real-life scenarios. In:Proc. of the 2017 IEEE Intelligent Vehicles Symp. (IV). IEEE, 2017. 589-594.
    [8] Zhao D, Guo Y, Jia YJ. Trafficnet:An open naturalistic driving scenario library. In:Proc. of the 20th IEEE Int'l Conf. on Intelligent Transportation Systems (ITSC). IEEE, 2017. 1-8.
    [9] Queiroz R, Berger T, Czarnecki K. GeoScenario:An open DSL for autonomous driving scenario representation. In:Proc. of the 2019 IEEE Intelligent Vehicles Symp. (IV). IEEE, 2019. 287-294.
    [10] Fremont DJ, Dreossi T, Ghosh S, et al. Scenic:A language for scenario specification and scene generation. In:Proc. of the 40th ACM SIGPLAN Conf. on Programming Language Design and Implementation. 2019. 63-78.
    [11] OpenStreetMap. https://www.openstreetmap.org/
    [12] Meta-object Facility (MOF). https://en.wikipedia.org/wiki/Meta-Object_Facility
    [13] UML OMG. OMG (2017) Unified Modeling Language®(OMG UML®) Version 2.5. 2017. https://www.omg.org/spec
    [14] Wang Y. Modeling, simulation and verification of autonomous driving scenario based on model-driven[MS. Thesis]. Shanghai:East China Normal University, 2020(in Chinese with English abstract).
    [15] Menzel T, Bagschik G, Maurer M. Scenarios for development, test and validation of automated vehicles. In:Proc. of the 2018 IEEE Intelligent Vehicles Symp. (IV). IEEE, 2018. 1821-1827.
    [16] Association for Standardisation of Automation and Measuring Systems. https://www.asam.net/
    [17] OpenScenario. https://www.asam.net/standards/detail/openscenario
    [18] OpenDRIVE. https://www.opendrive.com
    [19] Bartocci E, Deshmukh J, Donzé A, et al. Specification-based monitoring of cyber-physical systems:A survey on theory, tools and applications. In:Lectures on Runtime Verification. Cham:Springer-Verlag, 2018. 135-175.
    [20] Urmson C, Anhalt J, Bagnell D, et al. Autonomous driving in urban environments:Boss and the urban challenge. Journal of Field Robotics, 2008,25(8):425-466.
    [21] Gao Q, Zhang FL, Wang RJ, Zhou F. Trajectory big data:A review of key technologies in data processing. Ruan Jian Xue Bao/Journal of Software, 2017,28(4):959−992(in Chinese with English abstract). http://www.jos.org.cn/1000-9825/5143.htm[doi:10.13328/j.cnki.jos.005143]
    [22] Yuan H. Research on modeling spatiotemporal trajectories and spatiotemporal proximity analysis for time geographic analysis[Ph.D. Thesis]. Wuhan:Wuhan University, 2018(in Chinese with English abstract).
    [23] Shen L, Stopher PR. Review of GPS travel survey and GPS data-processing methods. Transport Reviews, 2014,34(3):316-334.
    [24] Buch N, Velastin SA, Orwell J. A review of computer vision techniques for the analysis of urban traffic. IEEE Trans. on Intelligent Transportation Systems, 2011,12(3):920-939.
    [25] Yu C, Zhang LJ, Jin H. Research progress and trend of big data-driven intelligent transportation system. Chinese Journal on Internet of Things, 2018,2(1):56-63(in Chinese with English abstract).[doi:10.11959/j.issn.2096-3750.2018.00041]
    [26] Zeng YW. Research on spatial data quality control and evaluation technique system[Ph.D. Thesis]. Wuhan:Wuhan University, 2004(in Chinese with English abstract).[doi:10.7666/d.Y698781]
    [27] Zhang J, Zhou Y. New software trustworthiness attribute weight distribution method based on attribute affection and importance. Application Research of Computers, 2016,33(5):1390-1394(in Chinese with English abstract).
    [28] Tao HW. Research on the measurement models of software trustworthiness based on attributes[Ph.D. Thesis]. Shanghai:East China Normal University, 2011(in Chinese with English abstract).[doi:10.7666/d.y1905206]
    [29] Hu SW. GIS quality evaluation and reliability analysis based fuzzy theory[Ph.D. Thesis]. Wuhan:Wuhan University, 2004(in Chinese with English abstract).
    [30] Zhang N, Yang YR, You TY, Yang YP. Development trends in China high-level autonomous driving from 2020 to 2023. In:Proc. of the EO Intelligence. 2020. 1-54(in Chinese with English abstract).
    [31] Holographic smart scene library derived from real traffic data. http://www.scenarios.cn/html/index.html
    [32] Yang W. Structured processing and behavioral semantic perception of spatiotemporal trajectory data[Ph.D. Thesis]. Wuhan:Wuhan University, 2019(in Chinese with English abstract).
    [33] Yang TT. The real-time traffic status acquirement and system assessment based on Taxi GPS trajectory data[MS. Thesis]. Shanghai:East China Normal University, 2016(in Chinese with English abstract).
    [34] Xu JJ, Zheng K, Chi MM, Zhu YY, Yu XH, Zhou XF. Trajectory big data:Data, applications and techniques. Journal on Communications, 2015,36(12):97-105(in Chinese with English abstract).[doi:10.11959/j.issn.1000-436x.2015318]
    [35] Xin B. Analysis approach of assisted driving safety scene based on learning and model checking[MS. Thesis]. Shanghai:East China Normal University, 2020(in Chinese with English abstract).
    [36] Fatehah M, Mezhuyev V. Design and process metamodels for modelling and verification of safety-related software applications in smart building systems. In:Proc. of the 6th Int'l Conf. on Information Technology:IoT and Smart City (ICIT 2018). New York:Association for Computing Machinery, 2018. 60-64.[doi:10.1145/3301551.3301577]
    [37] Chen JN, Li J. A method of sharing heterogeneous data in smart cities based on meta-models. CN104462244A, 2015-03-25(in Chinese).
    [38] DeepGTAV. https://github.com/aitorzip/DeepGTAV
    [39] Althoff M, Koschi M, Manzinger S. Commonroad:Composable benchmarks for motion planning on roads. In:Proc. of the 2017 IEEE Intelligent Vehicles Symp. (IV). 2017. 719-726.
    [40] Bach J, Otten S, Sax E. Model based scenario specification for development and test of automated driving functions. In:Proc. of the 2016 IEEE Intelligent Vehicles Symp. (IV). IEEE, 2016. 1149-1155.
    附中文参考文献:
    [1] 姚迪,张超,黄建辉,陈越新,毕经平.时空数据语义理解:技术与应用.软件学报,2018,29(7):2018-2045. http://www.jos.org.cn/1000-9825/5576.htm[doi:10.13328/j.cnki.jos.005576]
    [2] 张雷,张春霞,杜德慧,刘彪,田波,袁庆.空间信息时空大数据约束表达方法.CN110532341B,2020-11-03.
    [3] 张雷,张春霞,杜德慧,刘彪,田波,袁庆.空间信息时空元数据构建方法.CN110532340A,2019-12-03.
    [4] 四川重大特斯拉车祸2死6伤,特斯拉回应:数据显示车辆无问题.https://36kr.com/p/871536866489736
    [6] 朱冰,张培兴,赵健,陈虹,徐志刚,赵祥模,邓伟文.基于场景的自动驾驶汽车虚拟测试研究进展.中国公路学报,2019,32(6):1-19.
    [14] 王耀.基于模型驱动的自动驾驶场景建模、仿真与验证方法研究[硕士学位论文].上海:华东师范大学,2020.
    [21] 高强,张凤荔,王瑞锦,周帆.轨迹大数据:数据处理关键技术研究综述.软件学报,2017,28(4):959-992. http://www.jos.org.cn/1000-9825/5143.htm[doi:10.13328/j.cnki.jos.005143]
    [22] 袁辉.面向时间地理分析的轨迹大数据建模与时空邻近性分析研究[博士生学位论文].武汉:武汉大学,2018.
    [25] 余辰,张丽娟,金海.大数据驱动的智能交通系统研究进展与趋势.物联网学报,2018,2(1):56-63.[doi:10.11959/j.issn.2096-3750.2018.00041]
    [26] 曾衍伟.空间数据质量控制与评价技术体系研究[博士学位论文].武汉:武汉大学,2004.[doi:10.7666/d.Y698781]
    [27] 张俊,周勇.一种基于软件属性相互影响和重要性的属性权重分配方法.计算机应用研究,2016,33(5):1390-1394.
    [28] 陶红伟.基于属性的软件可信性度量模型研究[博士学位论文].上海:华东师范大学,2011.[doi:10.7666/d.y1905206]
    [29] 胡圣武.基于模糊理论的GIS质量评价与可靠性分析[博士学位论文].武汉:武汉大学,2004.
    [30] 张男,杨雅茹,由天宇,杨永平.2020-2023中国高等级自动驾驶产业发展趋势研究.亿欧智库,2020.1-54
    [31] 源于真实交通数据的全息式智能场景库.http://www.scenarios.cn/html/index.html
    [32] 杨伟.时空轨迹数据的结构化处理与行为语义感知[博士学位论文].武汉:武汉大学,2019.
    [33] 杨婷婷.基于出租车GPS轨迹数据的实时交通状态获取和现有实时路况系统评估[硕士学位论文].上海:华东师范大学,2016.
    [34] 许佳捷,郑凯,池明旻,等.轨迹大数据:数据、应用与技术现状.通信学报,2015,36(12):97-105.[doi:10.11959/j.issn.1000-436x. 2015318]
    [35] 白新.基于学习和模型检测的辅助驾驶场景安全的分析方法[硕士学位论文].上海:华东师范大学,2020.
    [37] 陈能成,李佳.一种基于元模型的智慧城市异构数据共享方法.CN104462244A,2015-03-25.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

张梦寒,杜德慧,张铭茁,张雷,王耀,周文韬.时空轨迹数据驱动的自动驾驶场景元建模方法.软件学报,2021,32(4):973-987

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2020-09-13
  • 最后修改日期:2020-10-26
  • 在线发布日期: 2021-01-22
  • 出版日期: 2021-04-06
文章二维码
您是第19780903位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号