基于深度学习的数字病理图像分割综述与展望
CSTR:
作者:
作者单位:

作者简介:

宋杰(1986-),男,博士,讲师,CCF专业会员,主要研究领域为生物医学图像处理,深度学习,机器学习与模式识别.
蔡子贇(1987-),男,博士,讲师,主要研究领域为深度学习,计算机视觉,模式识别,域的自适应.
肖亮(1976-),男,博士,教授,博士生导师,CCF高级会员,主要研究领域为信号处理,生物医学图像处理,机器学习与模式识别,计算机视觉.
蒋国平(1966-),男,博士,教授,博士生导师,主要研究领域为智能系统与复杂网络.
练智超(1983-),男,博士,副教授,主要研究领域为计算机视觉,人工智能系统安全,工业互联网.

通讯作者:

肖亮,E-mail:xiaoliang@mail.njust.edu.cn

中图分类号:

基金项目:

国家自然科学基金(62001247,61871226,61571230,62006127,61873326,61672298);江苏省社会发展重点研发计划(BE2018727);江苏省自然科学基金(BK20190728);江苏省高等学校自然科学研究面上项目(20KJB520005);南京邮电大学引进人才科研启动基金(NY219152,NY218120)


Overview and Prospect of Deep Learning for Image Segmentation in Digital Pathology
Author:
Affiliation:

Fund Project:

National Natural Science Foundation of China (62001247, 61871226, 61571230, 62006127, 61873326, 61672298); Jiangsu Provincial Social Developing Project (BE2018727); Natural Science Foundation of Jiangsu Province (BK20190728); Natural Science Foundation for Colleges and Universities in Jiangsu Province (20KJB520005); Introduction of Talent Research Start-up Fund of Nanjing University of Posts and Telecommunications (NY219152, NY218120)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    数字病理图像分析对于乳腺癌、前列腺癌等良恶性分级诊断具有重要意义,其中,组织基元的形态和目标测量是量化分析的重要依据.然而,由于病理数据多样性和复杂性等新特点,其分割任务面临着特征提取困难、实例分割困难等挑战.人工智能辅助病理量化分析将复杂病理数据转化为可挖掘的图像特征,使得自动提取组织基元的定量化信息成为可能.特别是随着计算机计算能力的快速发展,深度学习技术凭借其强大的特征学习、设计灵活等特性在数字病理量化分析领域取得了突破性成果.系统概述目前代表性深度学习方法,包括卷积神经网络、全卷积网络、编码器-解码器模型、循环神经网络、生成对抗网络等方法体系,总结深度学习在病理图像分割等任务中的建模机理和应用,并梳理了现有方法的方法理论、关键技术、优缺点和性能分析.最后讨论了未来数字病理图像分割深度学习建模的开放性挑战和新趋势.

    Abstract:

    The quantitative analysis of digital pathology images plays a significant role in the diagnosis of benign and malignant diseases such as breast cancer and prostate cancer, in which the morphology measurements of histologic primitives serve as a basis of quantitative analyses. However, the complex nature of digital pathology data, such as diversity, present significant challenges for such segmentation task, which might lead to difficulties in feature extraction and instance segmentation. By converting complex pathology data into minable image features using artificial intelligence assisted pathologist's analysis, it becomes possible to automatically extract quantitative information of individual primitives. Machine learning algorithms, in particular deep models, are emerging as leading tools in quantitative analyses of digital pathology. It has exhibited great power in feature learning with producing improved accuracy of various tasks. This survey provides a comprehensive review of this fast-growing field. Popular deep models are briefly introduced, including convolutional neural networks, fully convolutional networks, encoder-decoder architectures, recurrent neural networks, and generative adversarial networks, and current deep learning achievements in various tasks are summarized, such as detection and segmentation. This study also presents the mathematical theory, key steps, main advantages and disadvantages, and performance analysis of deep learning algorithms, and interprets their formulations or modelings for specific tasks. In addition, the open challenges and potential trends of future research are discussed in pathology image segmentation using deep learning.

    参考文献
    相似文献
    引证文献
引用本文

宋杰,肖亮,练智超,蔡子贇,蒋国平.基于深度学习的数字病理图像分割综述与展望.软件学报,2021,32(5):1427-1460

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2020-08-15
  • 最后修改日期:2020-09-27
  • 录用日期:
  • 在线发布日期: 2020-12-02
  • 出版日期: 2021-05-06
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号