一种基于功率调控的WiFi Direct节能优化机制
作者:
作者简介:

郭镇北(1994-),男,博士生,主要研究领域为网络智能运维,下一代互联网.
张小瑞(1996-),男,硕士,主要研究领域为网络态势感知.
李福亮(1986-),男,博士,副教授,CCF专业会员,主要研究领域为网络智能运维,下一代互联网.
孙磊(1986-),男,硕士,主要研究领域为嵌入式系统,新能源汽车.
梁博成(1996-),男,硕士,主要研究领域为网络智能运维,下一代互联网.

通讯作者:

李福亮,E-mail:lifuliang@cse.neu.edu.cn

中图分类号:

TP393

基金项目:

国家重点研发计划(2018YFB1702000)


Energy-saving Optimization Mechanism for WiFi Direct Based on Power Control
Author:
Fund Project:

National Key Research and Development Program of China (2018YFB1702000)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [30]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    WiFi Direct(WFD)是安卓系统广泛支持的Device-to-Device(D2D)通信技术.相比于蓝牙,WFD在传输速率和连接距离上更具优势;同时,WFD能够比WiFi热点更快速地创建连接.因此被广泛应用于构建D2D通信网络,用以支持边缘计算、流量卸载、移动众包等研究.但是WFD同时带来了更高的能耗,而能耗仍然是电池受限的嵌入式设备所关注的主要问题.现有的研究关注WFD的性能测量和组网技术,很少有对其能耗的研究.提出了一种基于功率调控的WFD节能机制.该机制对WFD默认节能算法进行了补充和优化.首先,搭建了一个基于WFD的D2D通信组,并对WFD默认节能机制进行了测量分析,测量结果表明,组主的消耗始终要高于组员的消耗.然后,详细阐述了所提出的WFD节能机制.该机制能够降低设备的传输能耗,并通过切换设角色来平衡组主的能耗.最后,仿真实验结果表明,该机制降低了11.86%的能耗,同时只损失了2%的吞吐量.

    Abstract:

    WiFi Direct (WFD) supported by Android has been widely used in device-to-device (D2D) communications. Compared with Bluetooth, WFD has advantages in data transmission rate and connection distance. At the same time, WFD can quickly create a connection than WiFi HotSpot. Therefore, it is widely used to form D2D communication networks and support edge computing, traffic offloading, mobile crowdsourcing, and other studies. However, it brings high energy consumption simultaneously, which is still a major concern for battery-constrained devices. Existing studies pay more attention to measuring and optimizing the performance of WFD-based networks, while few studies focus on the energy consumption. In this study, an energy-saving mechanism for the WFD based on power control is proposed, which makes a supplement to the default energy-saving mechanism of WFD. First of all, this study constructs a WFD-based communication group and a measurement analysis of the default energy-saving mechanism. Measurement results show that the energy consumption of the group owner is always higher than that of the group member. Then, the proposed energy-saving mechanism is described in detail, which can reduce the transmission consumption of devices and balance the energy consumption of the group owner by switching the role of the devices. At last, the proposed mechanism is evaluated with simulation experiments, and results show that the proposed mechanism can reduce 11.86% energy consumption with a throughput loss of 2%.

    参考文献
    [1] Alliance W. Wi-Fi peer-to-peer (P2P) technical specification v1.7. 2016. https://www.wi-fi.org/file/wifi-peer-to-peerp2p-technical-specification-v17
    [2] SIG B. Bluetooth 5:Go faster, go further. 2016. https://www.bluetooth.com/bluetooth-technology/bluetooth5/bluetooth5-paper
    [3] Turkes O, Scholten H, Havinga PJM. Opportunistic beacon networks:Information dissemination via wireless network identifiers. In:Proc. of the 2016 IEEE Int'l Conf. on Pervasive Computing and Communication Workshops (PerCom Workshops). Sydney, 2016. 1-6.[doi:10.1109/PERCOMW.2016.7457153]
    [4] Camps-Mur D, Garcia-Saavedra A, Serrano P. Device-to-Device communications with Wi-Fi Direct:Overview and experimentation. IEEE Wireless Communications, 2013,20(3):96-104.[doi:10.1109/MWC.2013.6549288]
    [5] Sun W, Yang C, Jin S, Choi S. Listen channel randomization for faster Wi-Fi direct device discovery. In:Proc. of the IEEE INFOCOM 201635th Annual IEEE Int'l Conf. on Computer Communications, San Francisco, 2016. 1-9.[doi:10.1109/INFOCOM. 2016.7524342]
    [6] Feng J, Liu Z, Ji Y. Wireless channel loss analysis-A case study using WiFi-Direct. In:Proc. of the 2014 Int'l Wireles Communications and Mobile Computing Conf. (IWCMC). Nicosia, 2014. 244-249.[doi:10.1109/IWCMC.2014.6906364]
    [7] Khan GZ, Park E, Gonzalez R. Performance analysis of early packet loss detection in WiFi Direct 802.11 networks. In:Proc. of the 2017 IEEE 13th Int'l Conf. on Wireless and Mobile Computing, Networking and Communications (WiMob). Rome, 2017. 1-7.[doi:10.1109/WiMOB.2017.8115818]
    [8] Mao ZF, Ma J, Jiang YM, Yao B. Performance evaluation of WiFi Direct for data dissemination in mobile social networks. In:Proc. of the 2017 IEEE Symp. on Computers and Communications (ISCC). Heraklion, 2017. 1213-1218.[doi:10.1109/ISCC.2017. 8024690]
    [9] Adam N, Tapparello C, Heinzelman W. Performance evaluation of WiFi Direct multi hop ad-hoc networks. In:Proc. of the 2020 Int'l Conf. on Computing, Networking and Communications (ICNC). Big Island, 2020. 661-666.[doi:10.1109/ICNC47757.2020. 9049743]
    [10] Conti M, Delmastro F, Minutiello G, Paris R. Experimenting opportunistic networks with WiFi Direct. In:Proc. of the 2013 IFIP Wireless Days (WD). Valencia, 2013. 1-6.[doi:10.1109/WD.2013.6686501]
    [11] El Alami M, Benamar N, Younis M, Shahin AA. A framework for hotspot support using Wi-Fi Direct based device-to-device links. In:Proc. of the 201713th Int'l Wireless Communications and Mobile Computing Conf. (IWCMC). Valencia, 2017. 552-557.[doi:10.1109/IWCMC.2017.7986345]
    [12] Funai C, Tapparello C, Heinzelman W. Enabling multi-hop ad hoc networks through WiFi Direct multi-group networking. In:Proc. of the 2017 Int'l Conf. on Computing, Networking and Communications (ICNC). Santa Clara, 2017. 491-497.[doi:10.1109/ICCNC.2017.7876178]
    [13] Condoluci M, Militano L, Orsino A, Alonso-Zarate J, Araniti G. LTE-Direct vs. WiFi-Direct for machine-type communications over LTE-A systems. In:Proc. of the 2015 IEEE 26th Annual Int'l Symp. on Personal, Indoor, and Mobile Radio Communications (PIMRC). Hong Kong, 2015. 2298-2302.[doi:10.1109/PIMRC.2015.7343681]
    [14] Gong Q, Guo Y, Chen Y, Liu Y, Xie F. Design and evaluation of a WiFi-Direct based LTE cooperative videostreaming system. In:Proc. of the 2016 IEEE Global Communications Conf. (GLOBECOM). Washington, 2016. 1-6.[doi:10.1109/GLOCOM.2016. 7841729]
    [15] Casetti C, Chiasserini CF, Pelle LC, Valle CD, Duan Y, Giaccone P. Content-centric routing in Wi-Fi direct multi-group networks. In:Proc. of the 2015 IEEE 16th Int'l Symp. on A World of Wireless, Mobile and Multimedia Networks (WoWMoM). Boston, 2015. 1-9.[doi:10.1109/WoWMoM.2015.7158136]
    [16] Sadio O, Ngom I, Lishou C. Controlling WiFi Direct group formation for non-critical applications in C-V2X network. IEEE Access, 2020,8:79947-79957.[doi:10.1109/ACCESS.2020.2990671]
    [17] Engelhart A, Haddad Y, Mishali Y. AssistDirect:A framework for multi-hop mobile ad-hoc networking. In:Proc. of the 2017 IEEE Int'l Conf. on Microwaves, Antennas, Communications and Electronic Systems (COMCAS). Tel-Aviv, 2017. 1-5.[doi:10.1109/COMCAS.2017.8244815]
    [18] Demir U, Faulkenberry A, Tapparello C, Heinzelman W. Reducing delay in group reformation in WiFi Direct networks through redundancy. In:Proc. of the 2018 IEEE Global Communications Conf. (GLOBECOM). Abu Dhabi, 2018. 1-7.[doi:10.1109/GLOCOM.2018.8647233]
    [19] Faulkenberry A, Demir U, Tapparello C, Heinzelman W. Evaluating methods for enabling continuous operation in dynamic WiFi Direct networks. In:Proc. of the 2020 Int'l Conf. on Computing, Networking and Communications (ICNC). Big Island, 2020. 228-234.[doi:10.1109/ICNC47757.2020.9049798]
    [20] Camps-Mur D, Perez-Costa X, Sallent-Ribes S. Designing energy efficient access points with Wi-Fi Direct. Computer Networks, 2011,55(13):2838-2855.
    [21] Laha A, Cao X, Shen W, Tian X, Cheng Y. An energy efficient routing protocol for device-to-device based multihop smartphone networks. In:Proc. of the 2015 IEEE Int'l Conf. on Communications (ICC). London, 2015. 5448-5453.[doi:10.1109/ICC.2015. 7249190]
    [22] Lim KW, Jung WS, Kim H, Han J, Ko Y. Enhanced power management for Wi-Fi Direct. In:Proc. of the 2013 IEEE Wireless Communications and Networking Conf. (WCNC). Shanghai, 2013. 123-128.[doi:10.1109/WCNC.2013.6554550]
    [23] Usman M, Asghar MR, Ansari IS, Qaraqe M, Granelli F. An energy consumption model for WiFi Direct based D2D communications. In:Proc. of the 2018 IEEE Global Communications Conf. (GLOBECOM). Abu Dhabi, 2018. 1-6.[doi:10.1109/GLOCOM.2018.8647905]
    [24] Naik S, D'Souza M. Efficient power saving method for WiFi Direct devices in IoT based on Hidden Markov model. In:Proc. of the 201911th Int'l Conf. on Communication Systems & Networks (COMSNETS). Bengaluru, 2019. 565-567.[doi:10.1109/COMSNETS.2019.8711299]
    [25] Usman M, Asghar MR, Ansari IS, Granelli F, Qaraqe K. Towards energy efficient multi-hop D2D networks using WiFi direct. In:Proc. of the 2017 IEEE Global Communications Conf. (GLOBECOM 2017). Singapore, 2017. 1-7.[doi:10.1109/GLOCOM.2017. 8254045]
    [26] Hidayab M, Ali AH, Abas Azmi KB. Wifi signal propagation at 2.4GHz. In:Proc. of the 2009 Asia Pacific Microwave Conf. Singapore, 2009. 528-531.[doi:10.1109/APMC.2009.5384182]
    [27] Lassabe F, Canalda P, Chatonnay P, Spies F, Baala O. A friis-based calibrated model for WiFi terminals positioning. In:Proc. of the 6th IEEE Int'l Symp. on a World of Wireless Mobile and Multimedia Networks. Taormina-Giardini Naxos, 2005. 382-387.[doi:10.1109/WOWMOM.2005.2]
    [28] Trifunovic S, Picu A, Hossmann T, Hummel KA. Adaptive role switching for fair and efficient battery usage indevice-to-device communication. ACM Sigmobile Mobile Computing & Communications Review, 2014,18(1):25-36.
    [29] Dai H, Ma H, Liu AX, Chen G. Radiation constrained scheduling of wireless charging tasks. IEEE/ACM Trans. on Networking, 2018,26(1):314-327.[doi:10.1109/TNET.2017.2786463]
    [30] Li L, Dai H, Chen G, Zheng J, Zhao Y, Zeng P. Radiation constrained fair wireless charging. In:Proc. of the 201714th Annual IEEE Int'l Conf. on Sensing, Communication, and Networking (SECON). San Diego, 2017. 1-9.[doi:10.1109/SAHCN.2017. 7964902]
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

郭镇北,李福亮,梁博成,张小瑞,孙磊.一种基于功率调控的WiFi Direct节能优化机制.软件学报,2021,32(8):2439-2456

复制
分享
文章指标
  • 点击次数:2340
  • 下载次数: 6093
  • HTML阅读次数: 4596
  • 引用次数: 0
历史
  • 收稿日期:2020-07-24
  • 最后修改日期:2020-09-07
  • 在线发布日期: 2021-02-07
  • 出版日期: 2021-08-06
文章二维码
您是第19893171位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号