LFKT:学习与遗忘融合的深度知识追踪模型
作者:
作者简介:

李晓光(1973-),男,博士,教授,主要研究领域为机器学习,数据挖掘,智慧教育.
魏思齐(1996-),男,硕士,主要研究领域为智慧教育,数据挖掘,深度学习.
张昕(1979-),男,博士,副教授,CCF专业会员,主要研究领域为数据挖掘,复杂网络,机器学习.
杜岳峰(1986-),男,博士,讲师,CCF专业会员,主要研究领域为数据质量管理,推荐系统,机器学习.
于戈(1962-),男,博士,教授,博士生导师,CCF会士,主要研究领域为数据库理论与技术,分布与并行式系统,云计算与大数据管理,区块链技术与应用.

通讯作者:

张昕,E-mail:zhangxin@lnu.edu.cn

基金项目:

国家自然科学基金(U1811261)


LFKT: Deep Knowledge Tracing Model with Learning and Forgetting Behavior Merging
Author:
Fund Project:

National Natural Science Foundation of China (U1811261)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [32]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    知识追踪任务旨在根据学生历史学习行为实时追踪学生知识水平变化,并且预测学生在未来学习表现.在学生学习过程中,学习行为与遗忘行为相互交织,学生的遗忘行为对知识追踪影响很大.为了准确建模知识追踪中学习与遗忘行为,提出一种兼顾学习与遗忘行为的深度知识追踪模型LFKT (learning and forgetting behavior modeling for knowledge tracing).LFKT模型综合考虑了4个影响知识遗忘因素,包括学生重复学习知识点的间隔时间、重复学习知识点的次数、顺序学习间隔时间以及学生对于知识点的掌握程度.结合遗忘因素,LFKT采用深度神经网络,利用学生答题结果作为知识追踪过程中知识掌握程度的间接反馈,建模融合学习与遗忘行为的知识追踪模型.通过在真实在线教育数据集上的实验,与当前知识追踪模型相比,LFKT可以更好地追踪学生知识掌握状态,并具有较好的预测性能.

    Abstract:

    The knowledge tracing task is designed to track changes of students' knowledge in real time based on their historical learning behaviors and to predict their future performance in learning. In the learning process, learning behaviors are intertwined with forgetting behaviors, and students' forgetting behaviors have a great impact on knowledge tracing. In order to accurately model the learning and forgetting behaviors in knowledge tracing, a deep knowledge tracing model LFKT (learning and forgetting behavior modeling for knowledge tracing) that combines learning and forgetting behaviors is proposed in this study. To model such two behaviors, the LFKT model takes into account four factors that affect knowledge forgetting, including the interval between students' repeated learning of knowledge points, the number of repeated learning of knowledge points, the interval between sequential learning, and the understanding degree of knowledge points. The model uses a deep neural network to predict knowledge status with indirect feedbacks on students' understanding of knowledge according to students' answers. With the experiments on the real datasets of online education, LFKT shows better performance of knowledge tracing and prediction in comparison with the traditional approaches.

    参考文献
    [1] Adamopoulos P. What makes a great MOOC? An interdisciplinary analysis of student retention in online courses. In:Proc. of the ICIS. 2013. 1-21.
    [2] Zhou Q, Mou C, Yang D. Research progress on Int'l Conf. on educational data mining:A survey. Ruan Jian Xue Bao/Journal of Software, 2015,26(11):3026-3042(in Chinese with English abstract). http://www.jos.org.cn/1000-9825/4887.htm[dor:10.13328/j. cnki.jos.004887]
    [3] Zhu TY, Huang ZY, Chen EH, Liu Q, Wu RZ, Wu L, Su Y, Chen ZG, Hu GP. Cognitive diagnosis based personalized question recommendation. Chinese Journal of Computers, 2017,40(1):176-191(in Chinese with English abstract).
    [4] Rabiner L, Juang B. An introduction to hidden Markov models. IEEE ASSP Magazine, 1986,3(1):4-16.
    [5] Corbett AT, Anderson JR. Knowledge tracing:Modeling the acquisition of procedural knowledge. User Modeling and User-Adapted Interaction, 1995,4(4):253-278.
    [6] Graves A, Mohamed A, Hinton G. Speech recognition with deep recurrent neural networks. In:Proc. of the IEEE Int'l Conf. on Acoustics, Speech and Signal Processing. Vancouver:IEEE, 2013. 6645-6649.
    [7] LeCun Y, Bottou L, Bengio Y, Haffner P. Gradient-Based learning applied to document recognition. Proc. of the IEEE, 1998, 86(11):2278-2324.
    [8] Piech C, Bassen J, Huang J, Ganguli S, Sahami M, Guibas L, Sohl-Dickstein J. Deep knowledge tracing. In:Proc. of the Neural Information Processing Systems. 2015. 505-513.
    [9] Zhang JN, Shi XJ, King I, Yeung D. Dynamic key-value memory networks for knowledge tracing. In:Proc. of the Int'l Conf. on World Wide Web. 2017. 765-774.
    [10] Sukhbaatar S, Weston J, Fergus R. End-to-End memory networks. In:Proc. of the Neural Information Processing Systems. 2015. 2440-2448.
    [11] Ebbinghaus H. Memory:A contribution to experimental psychology. Annals of Neurosciences, 2013,20(4):155-156.
    [12] Murre JM, Dros J. Replication and analysis of ebbinghaus' forgetting curve. PloS One, 2015,10(7):e0120644.
    [13] Bailey CD. Forgetting and the learning curve:A laboratory study. Management Science, 1989,35(3):340-352.
    [14] Khajah M, Lindsey RV, Mozer MC. How deep is knowledge tracing. In:Proc. of the Int'l Conf. on Educational Data Mining. 2016. 94-101.
    [15] Qiu YM, Qi YM, Lu HY, A Z. Does time matter? Modeling the effect of time with Bayesian knowledge tracing. In:Proc. of the Int'l Conf. on Educational Data Mining. 2011. 139-148.
    [16] Nagatani K, Zhang Q, Sato M, Chen YY, Chen F, Ohkuma T. Augmenting knowledge tracing by considering forgetting behavior. In:Proc. of the World Wide Web Conf. 2019. 3101-3107.
    [17] Pardos ZA, Heffernan NT. KT-IDEM:Introducing item difficulty to the knowledge tracing model. In:Proc. of the Int'l Conf. on User Modeling, Adaptation, and Personalization. Springer-Verlag, 2011. 243-254.
    [18] Baker D, Corbett AT, Aleven V. More accurate student modeling through contextual estimation of slip and Guess probabilities in Bayesian knowledge tracing. In:Proc. of the Int'l Conf. on Intelligent Tutoring Systems. Springer-Verlag, 2008. 406-415.
    [19] Khajah M, Wing RM, Lindsey RV, Mozer MC. Integrating latent-factor and knowledge-tracing models to predict individual differences in learning. In:Proc. of the Int'l Conf. on Educational Data Mining. 2014. 99-106.
    [20] Chen PH, Lu Y, Zheng VW, Pian Y. Prerequisite-Driven deep knowledge tracing. In:Proc. of the 2018 IEEE Int'l Conf. on Data Mining (ICDM). IEEE, 2018. 39-48.
    [21] Su Y, Liu QW, Liu Q, Huang ZY, Yin Y, Chen EH, Ding C, Wei S, Hu GP. Exercise-Enhanced sequential modeling for student performance prediction. In:Proc. of the National Conf. on Artificial Intelligence. 2018. 2435-2443.
    [22] Abdelrahman G, Wang Q. Knowledge tracing with sequential key-value memory networks. In:Proc. of the Int'l ACM SIGIR Conf. on Research and Development in Information Retrieval. 2019. 175-184.
    [23] Sun X, Zhao X, Ma Y, Yuan XR, He FJ, Feng J. Muti-Behavior features based knowledge tracking using decision tree improved DKVMN. In:Proc. of the ACM Turing Celebration Conf. China, 2019. 1-6.
    [24] Liu Q, Huang ZY, Yin Y, Chen EH, Xiong H, Su Y, Hu GP. EKT:Exercise-aware knowledge tracing for student performance prediction. IEEE Trans. on Knowledge and Data Engineering, 2019:1-15.
    [25] Nakagawa H, Iwasawa Y, Matsuo Y. Graph-Based knowledge tracing:Modeling student proficiency using graph neural network. In:Proc. of the IEEE/WIC/ACM Int'l Conf. on Web Intelligence (WI). IEEE, 2019. 156-163.
    [26] Minn S, Desmarais MC, Zhu FD, Xiao J, Wang JZ. Dynamic student classiffication on memory networks for knowledge tracing. In:Proc. of the Pacific-Asia Conf. on Knowledge Discovery and Data Mining. Cham:Springer-Verlag, 2019. 163-174.
    [27] Cheng S, Liu Q, Chen EH, Huang Z, Huang ZY, Chen YY, Ma HP, Hu GP. DIRT:Deep learning enhanced item response theory for cognitive diagnosis. In:Proc. of the ACM Int'l Conf. on Information and Knowledge Management. 2019. 2397-2400.
    [28] Shen SH, Liu Q, Chen EH, Wu H, Huang ZY, Zhao WH, Su Y, Ma HP, Wang SJ. Convolutional knowledge tracing:Modeling individualization in student learning process. In:Proc. of the Int'l ACM SIGIR Conf. on Research and Development in Information Retrieval. 2020. 1857-1860.
    [29] Ai FZ, Chen YS, Guo YC, Zhao YX, Wang ZZ, Fu GW. Concept-Aware deep knowledge tracing and exercise recommendation in an online learning system. In:Proc. of the Int'l Conf. on Educational Data Mining (EDM 2019). 2019. 240-245.
    附中文参考文献:
    [2] 周庆,牟超,杨丹.教育数据挖掘研究进展综述.软件学报,2015,26(11):3026-3042. http://www.jos.org.cn/1000-9825/4887.htm[dor:10.13328/j.cnki.jos.004887]
    [3] 朱天宇,黄振亚,陈恩红,等.基于认知诊断的个性化试题推荐方法.计算机学报,2017,40(1):176-191.
    引证文献
引用本文

李晓光,魏思齐,张昕,杜岳峰,于戈. LFKT:学习与遗忘融合的深度知识追踪模型.软件学报,2021,32(3):818-830

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2020-08-23
  • 最后修改日期:2020-09-03
  • 在线发布日期: 2021-01-21
  • 出版日期: 2021-03-06
文章二维码
您是第19727853位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号