多尺度时序依赖的校园公共区域人流量预测
作者:
作者简介:

谢贵才(1997-),男,硕士,CCF学生会员,主要研究领域为数据挖掘,知识图谱.
段磊(1981-),男,博士,教授,博士生导师,CCF高级会员,主要研究领域为数据挖掘,生物医学信息分析,进化计算.
蒋为鹏(1998-),男,硕士,CCF学生会员,主要研究领域为数据挖掘,人工智能.
肖珊(1997-),女,硕士,CCF学生会员,主要研究领域为数据挖掘,小样本学习.
徐一凡(1997-),男,硕士,CCF学生会员,主要研究领域为数据挖掘,异常检测.

通讯作者:

段磊,E-mail:leiduan@scu.edu.cn

基金项目:

国家自然科学基金(61972268)


Pedestrian Volume Prediction for Campus Public Area Based on Multi-scale Temporal Dependency
Author:
Fund Project:

National Natural Science Foundation of China (61972268)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [21]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    校园公共区域人流量预测对于维护校园安全、提升校园管理水平有重大意义.尤其在疫情防控下,高校复学对公共区域的人流量预测和控制提出了更高的要求.以高校食堂为例,通过预测就餐人数,有助于食堂防疫人员合理调度和安排,既降低了人群聚集的潜在风险,也可以针对食堂人流量分布情况提供分时分批服务.然而,由于校园管理需求,如节假日和教学安排等因素,使得校园公共区域人流量预测问题颇具挑战性.为此,提出一种基于深度学习的多尺度时序卷积网络MSCNN (multi-scale temporal patterns convolution neural networks),实现人流量时序数据中短时依赖、长时周期模式的获取和多尺度时序模式特征的重标定,以对任意时段人流量进行预测.通过在真实校园环境数据集以及公开数据集上的实验,验证了MSCNN模型的有效性和执行效率.

    Abstract:

    Predicting pedestrian volume in campus public area is of significance for maintaining campus safety and improving campus management level. In particular, due to the outbreak of epidemic, the resumption of college education has put forward higher requirements for the prediction and control of the pedestrian volume in public area. Taking college canteens as an example, predicting the pedestrian volume in canteen is helpful with canteen epidemic prevention worker to make scheduling and arrangement, which not only reduces the risk of crowd gathering, but also provides more considerate service according to the distribution of the pedestrian volume in canteen. Considering the requirements of campus management, e.g., holiday, course arrangement, pedestrian volume prediction in the campus public area is challenging. This study proposes a multi-scale temporal patterns convolution neural networks (MSCNN) based on deep learning to obtain the short-term dependencies as well as long-term periodicities, and reweights the multi-scale temporal pattern characteristics to predict the pedestrian volume at any given time. The effectiveness and efficiency of the MSCNN model are verified by experiments on real-world datasets.

    参考文献
    [1] Box GEP, Jenkins GM, Reinsel GC. Time Series Analysis:Forecasting and Control. 4th ed., John Wiley & Sons, 2008. 556-570.
    [2] Dasgupta S, Osogami T. Nonlinear dynamic Boltzmann machines for time-series prediction. In:Proc. of the 31st AAAI Conf. on Artificial Intelligence. San Francisco:AAAI, 2017. 1833-1839.
    [3] Jain A, Kumar AM. Hybrid neural network models for hydrologic time series forecasting. Applied Soft Computing, 2007,7(2):585-592.
    [4] Zhang G, Patuwo BE, Hu MY. Forecasting with artificial neural networks:The state of the art. Int'l Journal of Forecasting, 1998, 14(1):35-62.
    [5] Huang S, Wang D, Wu X, Tang A. DSANet:Dual self-attention network for multivariate time series forecasting. In:Proc. of the 28th ACM Int'l Conf. on Information and Knowledge Management. Beijing:ACM, 2019. 2129-2132.
    [6] Lea C, Vidal R, Reiter A, Hager GD. Temporal convolutional networks:A unified approach to action segmentation. In:Proc. of the Computer Vision (ECCV 2016) Workshops. Springer-Verlag, 2016. 47-54.
    [7] Yang J, Nguyen MN, San PP, Li X, Krishnaswamy S. Deep convolutional neural networks on multichannel time series for human activity recognition. In:Proc. of the 24th Int'l Joint Conf. on Artificial Intelligence. Buenos Aires:AAAI, 2015. 3995-4001.
    [8] Salinas D, Flunkert V, Gasthaus J, Januschowski T. DeepAR:Probabilistic forecasting with autoregressive recurrent networks. Int'l Journal of Forecasting, 2020,36(3):1181-1191.
    [9] Box GEP, Jenkins GM. Some recent advances in forecasting and control. Journal of the Royal Statistical Society, Series C (Applied Statistics), 1968,17(2):91-109.
    [10] Frigola R, Lindsten F, Schön TB, Rasmussen CE. Bayesian inference and learning in Gaussian process state-space models with particle MCMC. In:Proc. of the Advances in Neural InformationProcessing Systems. 2013. 3156-3164.
    [11] Hochreiter S, Schmidhuber J. Long short-term memory. Neural Computation, 1997,9(8):1735-1780.
    [12] Lai G, Chang W, Yang Y, Liu H. Modeling long-and short-term temporal patterns with deep neural networks. In:Proc. ofthe 41st Int'l ACM SIGIR Conf. on Research & Development in Information Retrieval. Ann Arbor:ACM, 2018. 95-104.
    [13] Shih SY, Sun FK, Lee HY. Temporal pattern attention for multivariate time series forecasting. Machine Learning, 2019,108(8-9):1421-1441.
    [14] Li X, Zhu X, Zhu X, JiY, Tang X. Student academic performance prediction using deep multi-source behavior sequential network. In:Proc. of the 24th Pacific-Asia Conf. on Knowledge Discovery and Data Mining. Singapore:Springer-Verlag, 2020. 567-579.
    [15] Zhang X, Sun G, Pan Y, Sun H, Tan J. Poor performance discovery of college students based on behavior pattern. In:Proc. of the 2017 IEEE Smart World, Ubiquitous Intelligence & Computing, Advanced & Trusted Computed, Scalable Computing & Communications, Cloud & Big Data Computing, Internet of People and Smart City Innovation. San Francisco:IEEE, 2017. 1-8.
    [16] Zhang L, Rangwala H. Early identification of at-risk students using iterative logistic regression. In:Proc. of the 19th Int'l Conf. on Artificial Intelligence in Education. London:Springer-Verlag, 2018. 613-626.
    [17] Peng W, Zhang X, Li X. Intelligent behavior data analysis for internet addiction. Scientific Programming, 2019. 1-12.
    [18] Hang M, Pytlarz I, Neville J. Exploring student check-in behavior for improved point-of-interest prediction. In:Proc. of the 24th ACM SIGKDD Int'l Conf. on Knowledge Discovery & Data Mining. London:ACM, 2018. 321-330.
    [19] Wei Y, Lv H, Chen M, Wang M, Heidari AA, Chen H, Li C. Predicting entrepreneurial intention of students:An extreme learning machine with Gaussian barebone harrishawks optimizer. IEEE Access, 2020,8:76841-76855.
    [20] Hu J, Shen L, Sun G. Squeeze-and-Excitation networks. In:Proc. of the 2018 IEEE Conf. on Computer Vision and Pattern Recognition. Salt Lake City:IEEE Computer Society, 2018. 7132-7141.
    [21] Vapnik V, Golowich SE, Smola A. Support vector method for function approximation, regression estimation and signal processing. In:Proc. of the Advances in Neural Information Processing Systems. MIT, 1996. 281-287.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

谢贵才,段磊,蒋为鹏,肖珊,徐一凡.多尺度时序依赖的校园公共区域人流量预测.软件学报,2021,32(3):831-844

复制
分享
文章指标
  • 点击次数:2712
  • 下载次数: 6556
  • HTML阅读次数: 4120
  • 引用次数: 0
历史
  • 收稿日期:2020-07-21
  • 最后修改日期:2020-09-03
  • 在线发布日期: 2021-01-21
  • 出版日期: 2021-03-06
文章二维码
您是第19728172位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号