基于Motif聚集系数与时序划分的高阶链接预测方法
作者:
作者简介:

康驻关(1996-),男,硕士,主要研究领域为图计算,链接预测.
金福生(1977-),男,博士,副教授,CCF高级会员,主要研究领域为大数据,区块链,人工智能.
王国仁(1966-),男,博士,教授,博士生导师,CCF杰出会员,主要研究领域为数据管理,大数据计算,知识图谱,区块链,生物信息学.

通讯作者:

金福生,E-mail:jfs21cn@bit.edu.cn

基金项目:

国家自然科学基金(61732003,61025007,60933001);国家重点研发计划(2020AAA0108500);广东省重点研发计划(2020B010164002);北京市科技重大专项(Z171100005117002)


High-order Link Prediction Method Based on Motif Aggregation Coefficient and Time Series Division
Author:
Fund Project:

National Natural Science Foundation of China (61732003, 61025007, 60933001); Key Research and Development Program of China (2020AAA0108500); Key R&D Project of Guangdong Province (2020B010164002); Beijing Major Science and Technology Projects (Z171100005117002)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [32]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    高阶链接预测是当前网络分析研究的热点和难点,一个优秀的高阶链接预测算法不仅可以挖掘出复杂网络中节点间存在的潜在联系,还有助于认识网络结构随时间演化的规律,对于探索未知的网络关系有着重要的作用.大多数传统的链接预测算法仅考虑节点间的结构相似性特征,而忽略高阶结构的特性以及网络变化的信息.提出一种基于Motif聚集系数与时序划分的高阶链接预测模型(MTLP模型),该模型通过提取网络中高阶结构的Motif聚集系数特征和网络结构演变等特征,将其构建成可表示性特征向量,并使用多层感知器网络模型进行训练完成链接预测任务.该模型能够同时结合网络中高阶结构的聚集特征与网络结构演变信息,从而改善预测效果.通过在不同的数据集上进行实验,其结果表明,所提出的MTLP模型具有更好的高阶链接预测性能.

    Abstract:

    High-level link prediction is a hot and difficult problem in network analysis research. An excellent high-level link prediction algorithm can not only mine the potential relationship between nodes in a complex network but also help to understand the law of network structure evolves over time. Exploring unknown network relationships has important applications. Most traditional link prediction algorithms only consider the structural similarity between nodes, while ignoring the characteristics of higher-order structures and information about network changes. This study proposes a high-order link prediction model based on Motif clustering coefficients and time series partitioning (MTLP). This model constructs a representational feature vector by extracting the features of Motif clustering coefficients and network structure evolution of high-order structures in the network, and uses multilayer perceptron (MLP) network model to complete the link prediction task. By conducting experiments on different real-life data sets, the results show that the proposed MTLP model has better high-order link prediction performance than the state-of-the-art methods.

    参考文献
    [1] Liben-Nowell D, Kleinberg J. The link-prediction problem for social networks. Journal of the American Society for Information Science and Technology, 2007,58(7):1019-1031.
    [2] Backstrom L, Leskovec J. Supervised random walks:Predicting and recommending links in social networks. In:Proc. of the 4th ACM Int'l Conf. on Web Search and Data Mining. 2011. 635-644.
    [3] Wang X, Gulbahce N, Yu H. Network-Based methods for human disease gene prediction. Briefings in Functional Genomics, 2011, 10(5):280-293.
    [4] Tang J, Wu S, Sun J, et al. Cross-domain collaboration recommendation. In:Proc. of the 18th ACM SIGKDD Int'l Conf. on Knowledge Discovery and Data Mining. 2012. 1285-1293.
    [5] Benson AR, Gleich DF, Leskovec J. Higher-order organization of complex networks. Science, 2016,353(6295):163-166.
    [6] Newman MEJ. Clustering and preferential attachment in growing networks. Physical Review E, 2001,64(2):025102.
    [7] Adamic LA, Adar E. Friends and neighbors on the Web. Social Networks, 2003,25(3):211-230.
    [8] Barabâsi AL, Jeong H, Néda Z, et al. Evolution of the social network of scientific collaborations. Physica A:Statistical Mechanics and Its Applications, 2002,311(3-4):590-614.
    [9] Katz L. A new status index derived from sociometric analysis. Psychometrika, 1953,18(1):39-43.
    [10] Wang C, Satuluri V, Parthasarathy S. Local probabilistic models for link prediction. In:Proc. of the 7th IEEE Int'l Conf. on Data Mining (ICDM 2007). IEEE, 2007. 322-331.
    [11] Page L, Brin S, Motwani R, et al. The Pagerank citation ranking:Bringing order to the Web. Stanford InfoLab, 1999.
    [12] Bahmani B, Chowdhury A, Goel A. Fast incremental and personalized pagerank. Proc. of the VLDB Endowment, 2010,4(3):173-184.
    [13] Li D, Shen DR, Kou Y, et al. Research on a link-prediction method based on a hierarchical hybrid-feature graph. SCIENTIA SINICA Informationis, 2020,50(2):221-238(in Chinese with English abstract).
    [14] Clauset A, Moore C, Newman MEJ. Hierarchical structure and the prediction of missing links in networks. Nature, 2008,453(7191):98-101.
    [15] Tian T, Yang YL, Guo J, et al. Link prediction of brain networks based on hierarchical random graph model. Application Research of Computers, 2016,33:1066-1069(in Chinese with English abstract).
    [16] Das S, Das SK. A probabilistic link prediction model in time-varying social networks. In:Proc. of the 2017 IEEE Int'l Conf. on Communications (ICC). IEEE, 2017. 1-6.
    [17] Liu L, Wang YY, Ni QX, Cao J, Bu Z. A link prediction approach in temporal networks based on game theory. Journal of Computer Research and Development, 2019,56(9):1953-1964(in Chinese with English abstract).
    [18] Chiu C, Zhan J. Deep learning for link prediction in dynamic networks using weak estimators. IEEE Access, 2018,6:35937-35945.
    [19] Yaghi RI, Faris H, Aljarah I, et al. Link prediction using evolutionary neural network models. In:Proc. of the Evolutionary Machine Learning Techniques. Singapore:Springer-Verlag, 2020. 85-111.
    [20] Abuoda G, Morales GDF, Aboulnaga A. Link prediction via higher-order motif features. arXiv preprint arXiv:1902.06679, 2019.
    [21] Chen J, Xu X, Wu Y, et al. GC-LSTM:Graph convolution embedded lstm for dynamic link prediction. arXiv preprint arXiv:1812. 04206, 2018.
    [22] Schaeffer SE. Graph clustering. Computer Science Review, 2007,1(1):27-64.
    [23] Newman MEJ. Random graphs with clustering. Physical Review Letters, 2009,103(5):058701.
    [24] Seshadhri C, Kolda TG, Pinar A. Community structure and scale-free collections of Erdős-Rényi graphs. Physical Review E, 2008,34(5):700-720.
    [25] Henderson K, Gallagher B, Eliassi-Rad T, et al. Rolx:Structural role extraction & mining in large graphs. In:Proc. of the 18th ACM SIGKDD Int'l Conf. on Knowledge Discovery and Data Mining. ACM, 2012. 1231-1239.
    [26] LaFond T, Neville J, Gallagher B. Anomaly detection in networks with changing trends. In:Proc. of the Outlier Detection and Description under Data Diversity at the Int'l Conf. on Knowledge Discovery and Data Mining. 2014.
    [27] Benson AR, Abebe R, Schaub MT, et al. Simplicial closure and higher-order link prediction. Proc. of the National Academy of Sciences, 2018,115(48):E11221-E11230.
    [28] Davis J, Goadrich M. The relationship between precision-recall and ROC curves. In:Proc. of the 23rd Int'l Conf. on Machine Learning. 2006. 233-240.
    附中文参考文献:
    [13] 李冬,申德荣,寇月,等.基于层次化混合特征图的链路预测方法.中国科学:信息科学,2020,50(2):4.
    [15] 田甜,杨艳丽,郭浩,等.基于层次随机图模型的脑网络链路预测.计算机应用研究,2016,33(4):1066-1069.
    [17] 刘留,王煜尧,倪琦瑄,等.一种基于博弈论的时序网络链路预测方法.计算机研究与发展,2019,56(9):1953-1964.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

康驻关,金福生,王国仁.基于Motif聚集系数与时序划分的高阶链接预测方法.软件学报,2021,32(3):712-725

复制
分享
文章指标
  • 点击次数:1991
  • 下载次数: 5763
  • HTML阅读次数: 3660
  • 引用次数: 0
历史
  • 收稿日期:2020-07-09
  • 最后修改日期:2020-09-03
  • 在线发布日期: 2021-01-21
  • 出版日期: 2021-03-06
文章二维码
您是第19727817位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号