基于意图的网络研究综述
作者:
作者简介:

李福亮(1986-),男,博士,副教授,CCF专业会员,主要研究领域为网络智能运维,下一代互联网;刘树成(1983-),男,博士,高级工程师,主要研究领域为网络架构,IPv6,SDN,意图网络,网络智能化,物联网;范广宇(1995-),男,硕士生,主要研究领域为意图网络,网络测量;谢坤(1984-),男,博士,讲师,主要研究领域为下一代互联网,网络资源智能规划,数据中心网络;王兴伟(1968-),男,博士,教授,博士生导师,CCF高级会员,主要研究领域为互联网,云计算,网络空间安全;孙琼(1982-),女,博士,高工,主要研究领域为下一代互联网,SDN网络.

通讯作者:

王兴伟,E-mail:wangxw@mail.neu.edu.cn

基金项目:

国家重点研发计划(2018YFB1800201,2019YFB1802600);国家自然科学基金(61872073);辽宁省“兴辽英才计划”(XLYC1902010)


State-of-the-art Survey of Intent-based Networking
Author:
Fund Project:

National Key Research and Development Program of China (2018YFB1800201, 2019YFB1802600); National Natural Science Foundation of China (61872073); Liaoning Revitalization Talents Program (XLYC1902010)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [68]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    随着互联网规模的不断增大,网络管理和运维变得极其复杂,网络自治成为未来网络发展的趋势,基于意图的网络(intent-based networking,简称IBN)应运而生.首先从IBN的定义入手,介绍学术界及产业界对IBN范畴及体系结构的描述,并概述IBN实现的闭环,包括意图获取、意图转译、策略验证、意图下发与执行、实时反馈及优化;其次,按照IBN闭环,详细阐述IBN关键技术的研究现状;随后,举例说明IBN在网络测量和网络业务编排中的应用;最后,展望未来研究工作并总结全文.

    Abstract:

    With the increasing scale of the Internet, network management and operations become extremely complex. Intent-based networking (IBN) emerges when network autonomy becomes a major trend of future network. First of all, this paper gives the definition of IBN, and describes the IBN category and architecture in academia and industry. The implementation closed-loop of IBN is also summarized, including intent acquisition, intent translation, policy verification, intent distribution and execution, real-time feedback and optimization. Then, key technologies of IBN implementation are elaborated in detail according to the IBN closed-loop. In addition, examples are given to illustrate the IBN-based applications from the aspects of network measurement and network service orchestration. Finally, the future research work is prospected and the whole paper is concluded.

    参考文献
    [1] Li Y, Yin X, Wang Z, et al. A survey on network verification and testing with formal methods:approaches and challenges. IEEE Communications Surveys & Tutorials, 2018,21(1):940-969.
    [2] Veriflow. Network complexity, change, and human factors are failing the business. 2019. https://www.veriflow.net/survey/
    [3] Muuss M. The story of the ping program. 1983. http://mirrors.pdp-11.ru/_vax/www.bandwidthco.com/whitepapers/netforensics/icmp/The%20Story%20of%20the%20PING%20Program.pdf
    [4] Traceroute. 2019. ftp://ftp.ee.lbl.gov/traceroute.tar.gz
    [5] McKeown N. Software-defined networking. In:Proc. of the INFOCOM Key Note. 2009. http://infocom2009.ieee-infocom.org/technicalProgram.htm
    [6] Feamster N, Rexford J, Zegura E. The Road to SDN:An Intellectual History of Programmable Networks. ACM SIGCOMM Computer Communication Review, 2014,44(2):87-98.
    [7] Han Y, Li J, Hoang D, et al. An intent-based network virtualization platform for SDN. In:Proc. of the Int'l Conf. on Network & Service Management. IEEE, 2017.
    [8] Janz C. Intent NBI-definition and principles. Open Networking Foundation, 2015. https://www.opennetworking.org/wp-content/uploads/2014/10/TR-523_Intent_Definition_Principles.pdf
    [9] Elkhatib Y, Coulson G, Tyson G. Charting an intent driven network. In:Proc. of the 201713th Int'l Conf. on Network and Service Management (CNSM). IEEE Computer Society, 2017.
    [10] Zhang H, Wang Y, Qi X, et al. Demo abstract:An intent solver for enabling intent-based SDN. In:Proc. of the 2017 IEEE Conf. on Computer Communications Workshops (INFOCOM WKSHPS). IEEE, 2017. 968-969.
    [11] Kiran M, Pouyoul E, Mercian A, et al. Enabling intent to configure scientific networks for high performance demands. Future Generation Computer Systems, 2018,79:205-214.
    [12] Cohen R, Barabash K, Rochwerger B, et al. An intent-based approach for network virtualization. In:Proc. of the 2013 IFIP/IEEE Int'l Symp. on Integrated Network Management (IM 2013). IEEE, 2013.
    [13] Intent:Don't tell me what to do (tell me what you want)! 2015. https://www.sdxcentral.com/articles/contributed/networkintentsummitperspectivedavidlenrow/2015/02/
    [14] Laliberte B. Towards the Intent Based Network. 2018(in Chinese with English abstract). https://www.cisco.com/c/m/zh_cn/express/case_center/en/anren008369.html
    [15] Comer D, Rastegarnia A. OSDF:An intent-based software defined network programming framework. In:Proc. of the 2018 IEEE 43rd Conf. on Local Computer Networks (LCN). IEEE, 2018. 527-535.
    [16] Lui W. RFC 8338 Policy-based Management Framework for the Simplified Use of Policy Abstractions (SUPA). feb-2018, 2018.
    [17] Behringer M, Pritikin M, Bjarnason S, et al. Autonomic Networking:Definitions and Design Goals. RFC7575, 2015.
    [18] Jiang S, Carpenter B, Behringer M. General Gap Analysis for Autonomic Networking. RFC 7576, 2015.
    [19] Clemm A, Nobre J, Granville L, et al. Autonomic Networking Use Case for Distributed Detection of Service Level Agreement (SLA) Violations. RFC 7576, 2015.
    [20] Souri A, Norouzi M. A state-of-the-art survey on formal verification of the Internet of things applications. Journal of Service Science Research, 2019,11(1):47-67.
    [21] McKeown N, Anderson T, Balakrishnan H, Parulkar G, Peterson L, Rexford J, Shenker S, Turner J. OpenFlow:Enabling innovation in campus networks. ACM SIGCOMM Computer Communication Review, 2008,38(2):69-74.[doi:10.1145/1355734. 1355746]
    [22] Bosshart P, Daly D, Gibb G, et al. P4:Programming protocol-independent packet processors. ACM SIGCOMM Computer Communication Review, 2014,44(3):87-95.
    [23] Opendaylight SDN controller. 2019. https://www.opendaylight.org/
    [24] NEMO. Network model. 2019. http://www.nemo-project.net/
    [25] Van Deursen A, Klint P. Domain-specific language design requires feature descriptions. Journal of Computing and Information Technology, 2002,10(1):1-17.
    [26] 2019. https://www.cisco.com/c/en/us/products/cloud-systems-management/dna-center/index.html
    [27] Pham M, Hoang DB. SDN applications-the intent-based northbound interface realisation for extended applications. In:Proc. of the 2016 IEEE NetSoft Conf. and Workshops (NetSoft). IEEE, 2016. 372-377.
    [28] Koshibe A. Onos intent framework. 2016. https://wiki.onosproject.org/display/ONOS/Intent+Framework/
    [29] Sanvito D, Moro D, Gullì M, et al. ONOS intent monitor and reroute service:Enabling plug&play routing logic. In:Proc. of the 20184th IEEE Conf. on Network Softwarization and Workshops (NetSoft). IEEE, 2018. 272-276.
    [30] Foster N, Harrison R, Freedman MJ, et al. Frenetic:A network programming language. ACM Sigplan Notices, 2011,46(9):279-291.
    [31] Anderson CJ, Foster N, Guha A, et al. NetKAT:Semantic foundations for networks. ACM Sigplan Notices, 2014,49(1):113-126.
    [32] Yu Y, Wang ZL, Bi J, Shi XG, Yin, X. Survey on the languages in the northbound interface of software defined networking. Ruan Jian Xue Bao/Journal of Software, 2016,27(4):993-1008(in Chinese with English abstract). http://www.jos.org.cn/1000-9825/5028.htm[doi:10.13328/j.cnki.jos.005028]
    [33] Tian B, Zhang X, Zhai E, et al. Safely and automatically updating in-network ACL configurations with intent language. In:Proc. of the ACM Special Interest Group on Data Communication. ACM, 2019. 214-226.
    [34] Prakash C, Lee J, Turner Y, et al. PGA:Using graphs to express and automatically reconcile network policies. ACM SIGCOMM Computer Communication Review, 2015,45(4):29-42.
    [35] Gruber TR. A translation approach to portable ontology specifications. Knowledge Acquisition, 1993,5(2):199-220.
    [36] Liao B, Gao J. An automatic policy refinement mechanism for policy-driven grid service systems. In:Proc. of the Int'l Conf. on Grid and Cooperative Computing. Berlin, Heidelberg:Springer-Verlag, 2005. 166-171.
    [37] Riftadi M, Kuipers F. P4I/O:Intent-based networking with P4. In:Proc. of the 2019 IEEE Conf. on Network Softwarization (NetSoft). IEEE, 2019. 438-443.
    [38] Beigi MS, Calo S, Verma D. Policy transformation techniques in policy-based systems management. In:Proc. of the 5th IEEE Int'l Workshop on Policies for Distributed Systems and Networks (POLICY 2004). IEEE, 2004. 13-22.
    [39] Wang P, Huang L, Xu H, et al. Rule anomalies detecting and resolving for software defined networks. In:Proc. of the IEEE Global Communications Conf. IEEE, 2016. 1-6.
    [40] Al-Shaer E, Al-Haj S. FlowChecker:Configuration analysis and verification of federated openflow infrastructures. In:Proc. of the ACM Workshop on Assurable and Usable Security Configuration. ACM, 2010. 37-44.
    [41] Khurshid A, Zou X, Zhou W, et al. Veriflow:Verifying network-wide invariants in real time. In:Proc. of the 10th USENIX Symp. on Networked Systems Design and Implementation (NSDI 2013). 2013. 15-27.
    [42] Gleirscher M, Marmsoler D. Formal methods:Oversold? Underused? A survey. arXiv preprint arXiv:1812.08815, 2018.
    [43] Legay A, Delahaye B, Bensalem S. Statistical model checking:An overview. In:Proc. of the Int'l Conf. on Runtime Verification. Berlin, Heidelberg:Springer-Verlag, 2010. 122-135.
    [44] Kovács L, Voronkov A. First-Order theorem proving and Vampire. In:Proc. of the Int'l Conf. on Computer Aided Verification. Berlin, Heidelberg:Springer-Verlag, 2013. 1-35.
    [45] Cadar C, Sen K. Symbolic execution for software testing:Three decades later. Communications of the ACM, 2013,56(2):82-90.
    [46] Armand M, Faure G, Grégoire B, et al. A modular integration of SAT/SMT solvers to Coq through proof witnesses. In:Proc. of the Int'l Conf. on Certified Programs and Proofs. Berlin, Heidelberg:Springer-Verlag, 2011. 135-150.
    [47] Huang SS, Green TJ, Loo BT. Datalog and emerging applications:An interactive tutorial. In:Proc. of the ACM SIGMOD Int'l Conf. on Management of Data (SIGMOD 2011). Athens, 2011. 1213-1216.
    [48] Jackson D. Software Abstractions-Logic, Language, and Analysis. MIT Press, 2006.
    [49] Son S, Shin S, Yegneswaran V, et al. Model checking invariant security properties in OpenFlow. In:Proc. of the 2013 IEEE Int'l Conf. on Communications (ICC). IEEE, 2013. 1974-1979.
    [50] Lewis B, Fawcett L, Broadbent M, et al. Using P4 to enable scalable intents in software defined networks. In:Proc. of the 2018 IEEE 26th Int'l Conf. on Network Protocols (ICNP). IEEE, 2018. 442-443.
    [51] Gupta A, Harrison R, Canini M, et al. Sonata:Query-driven streaming network telemetry. In:Proc. of the 2018 Conf. of the ACM Special Interest Group on Data Communication. ACM, 2018. 357-371.
    [52] Laffranchini P, Rodrigues L, Canini M, et al. Measurements as first-class artifacts. In:Proc. of the IEEE INFOCOM 2019-IEEE Conf. on Computer Communications. IEEE, 2019
    [53] Beckett R, Mahajan R, Milstein TD, Padhye J, Walker D. Don't mind the gap:Bridging network-wide objectives and device-level configurations. In:Proc. of the ACM SIGCOMM (SIGCOMM). 2016.
    [54] Beckett R, Mahajan R, Milstein TD, Padhye J, Walker D. Network configuration synthesis with abstract topologies. In:Proc. of the 38th ACM SIGPLAN Conf. on Programming Language Design and Implementation (PLDI). 2017.
    [55] El-Hassany A, Tsankov P, Vanbever L, Vechev MT. Network-wide configuration synthesis. In:Proc. of the 29th Int'l Conf. on Computer Aided Verification (CAV). 2017.
    [56] El-Hassany A, Tsankov P, Vanbever L, Vechev MT. NetComplete:Practical network-wide configuration synthesis with autocompletion. In:Proc. of the 15th USENIX Symp. on Networked Systems Design and Implementation (NSDI). 2018.
    [57] Estan C, Keys K, Moore D, et al. Building a better NetFlow. ACM SIGCOMM Computer Communication Review, 2004,34(4):245-256.
    [58] Phaal P, Panchen S, McKee N. InMon corporation's sFlow:A method for monitoring traffic in switched and routed networks. 2001. https://www.hjp.at/doc/rfc/rfc3176.html
    [59] Pan T, Song E, Bian Z, et al. INT-path:Towards optimal path planning for in-band network-wide telemetry. In:Proc. of the IEEE INFOCOM 2019-IEEE Conf. on Computer Communications. IEEE, 2019. 487-495.
    [60] Zhang P, Zhang C, Hu C. Fast data plane testing for software-defined networks with RuleChecker. IEEE/ACM Trans. on Networking, 2018,27(1):173-186.
    [61] Stoenescu R, Popovici M, Negreanu L, Raiciu C. Symnet:Scalable symbolic execution for modern networks. In:Proc. of the ACM SIGCOMM (SIGCOMM). 2016.
    [62] Beckett R, Gupta A, Mahajan R, Walker D. A general approach to network configuration verification. In:Proc. of the ACM SIGCOMM (SIGCOMM). 2017.
    [63] Hu ZG, Tian CQ, Du L, Guan XQ, Cao F. Current research and future perspective on IP network performance measurement. Ruan Jian Xue Bao/Journal of Software, 2017,28(1):105-134(in Chinese with English abstract). http://www.jos.org.cn/1000-9825/5127. htm[doi:10.13328/j.cnki.jos.005127]
    [64] Arezoumand S, Dzeparoska K, Bannazadeh H, et al. MD-IDN:Multi-domain intent-driven networking in software-defined infrastructures. In:Proc. of the 201713th Int'l Conf. on Network and Service Management (CNSM). IEEE, 2017. 1-7.
    附中文参考文献:
    [14] Laliberte B.向基于意图的网络迈进.2018. https://www.cisco.com/c/m/zh_cn/express/case_center/en/anren008369.html
    [32] 于洋,王之梁,毕军,施新刚,尹霞.软件定义网络中北向接口语言综述.软件学报,2016,27(4):993-1008. http://www.jos.org.cn/1000-9825/5028.htm[doi:10.13328/j.cnki.jos.005028]
    [63] 胡治国,田春岐,杜亮,关晓蔷,曹峰.IP网络性能测量研究现状和进展.软件学报,2017,28(1):105-134. http://www.jos.org.cn/1000-9825/5127.htm[doi:10.13328/j.cnki.jos.005127]
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

李福亮,范广宇,王兴伟,刘树成,谢坤,孙琼.基于意图的网络研究综述.软件学报,2020,31(8):2574-2587

复制
分享
文章指标
  • 点击次数:4414
  • 下载次数: 11192
  • HTML阅读次数: 4801
  • 引用次数: 0
历史
  • 收稿日期:2020-01-06
  • 最后修改日期:2020-03-09
  • 在线发布日期: 2020-06-08
  • 出版日期: 2020-08-06
文章二维码
您是第19527710位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号