具有万有引力加速机理的布谷鸟搜索算法
作者:
作者单位:

作者简介:

傅文渊(1982-),男,硕士,主要研究领域为智能信号优化与智能学习控制,电路与系统设计,嵌入式系统设计.

通讯作者:

傅文渊,E-mail:fwy@hqu.edu.cn

中图分类号:

TP18

基金项目:

国家自然科学基金(61204122);福建省中青年教师教育科研项目(JA15037);福建省自然科学基金(2015J1263)


Cuckoo Search Algorithm with Gravitational Acceleration Mechanism
Author:
Affiliation:

Fund Project:

National Natural Science Foundation of China (61204122); Mid-Aged and Young Teachers Education Research Project of Fujian Province (JA15037); Natural Science Foundation of Fujian Province (2015J1263)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了解决布谷鸟搜索算法收敛速度较低、全局收敛效率不高的问题,提出了具有万有引力加速机理的布谷鸟算法.该算法基于万有引力搜索无需学习外部环境因素的变化亦能感知全局最优的特点,将布谷鸟巢穴等价为不同质量的个体,使其在优化过程中不仅遵循Levy飞行规律,而且遵循万有引力定律.不仅利用布谷鸟巢穴间存在的万有引力进行加速搜索,而且提出了一种概率变异的方法,增大了种群多样性,有效地平衡了算法的全局搜索能力和局部开采能力,提高了算法的全局搜索效率和收敛精度.通过算法的数学机理分析和26个基准测试函数实验结果表明,所提出的算法与其他改进智能优化算法比较,具有更优的性能.

    Abstract:

    In this paper, a new cuckoo search algorithm with gravitational acceleration search mechanism is presented to address low convergence rate and deteriorated search precision. The algorithm is fundamentally inspired by the fact that gravitational search can also get the global optimal without perceiving the change on the driving effect of external environment. Each of the cuckoo nests exerted on different quality not only follows the Levy flight law but also abides the law of universal gravitation during the process of optimization, which accelerates the convergence significantly due to the intrinsic gravitational attraction between individuals within the cuckoo nests. Furthermore, a new probability mutation approach is formally given to achieve a balance between the global and local search for the proposed algorithm. Consequently, the global convergence efficiency and search precision of the algorithm are significantly enhanced. Via mathematical analysis and 26 benchmark test functions, the proposed agorithm is competitive for the convergence rate and search precision in a comparison with other variants of intelligent optimization algorithm.

    参考文献
    相似文献
    引证文献
引用本文

傅文渊.具有万有引力加速机理的布谷鸟搜索算法.软件学报,2021,32(5):1480-1494

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2018-07-02
  • 最后修改日期:2019-09-26
  • 录用日期:
  • 在线发布日期: 2021-05-07
  • 出版日期: 2021-05-06
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号