跨领域文本情感分类研究进展
作者:
作者简介:

赵传君(1986-),男,山东青州人,博士,讲师,CCF学生会员,主要研究领域为文本情感分析;王素格(1964-),女,博士,教授,博士生导师,CCF专业会员,主要研究领域为自然语言处理,文本挖掘,情感分析;李德玉(1965-),男,博士,教授,博士生导师,CCF高级会员,主要研究领域为数据挖掘.

通讯作者:

赵传君,E-mail:zhaochuanjun@foxmail.com

基金项目:

国家自然科学基金(61906110,61632011,61573231,61672331,61432011,61603229);山西省高等学校科技创新项目(2019L0500);山西省应用基础研究计划(201901D211414);山西省高等学校优秀成果培育项目(2019SK036)


Research Progress on Cross-domain Text Sentiment Classification
Author:
Fund Project:

National Natural Science Foundation of China (61906110, 61632011, 61573231, 61672331, 61432011, 61603229); Scientific and Technologial Innovation Programs of Higher Education Institutions in Shanxi (STIP) (2019L0500); Shanxi Application Basic Research Plan (201901D211414); Cultivate Scientific Research Excellence Programs of Higher Education Institutions in Shanxi (CSREP) (2019SK036)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [125]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    作为社会媒体文本情感分析的重要研究课题之一,跨领域文本情感分类旨在利用源领域资源或模型迁移地服务于目标领域的文本情感分类任务,其可以有效缓解目标领域中带标签数据不足问题.从3个角度对跨领域文本情感分类方法行了归纳总结:(1)按照目标领域中是否有带标签数据,可分为直推式和归纳式情感迁移方法;(2)按照不同情感适应性策略,可分为实例迁移方法、特征迁移方法、模型迁移方法、基于词典的方法、联合情感主题方法以及图模型方法等;(3)按照可用源领域个数,可分为单源和多源跨领域文本情感分类方法.此外,还介绍了深度迁移学习方法及其在跨领域文本情感分类的最新应用成果.最后,围绕跨领域文本情感分类面临的关键技术问题,对可能的突破方向进行了展望.

    Abstract:

    As an important research topic in social media text sentiment analysis, cross-domain text sentiment classification aims to use the source domain resources or model transfer to serve the target domain text sentiment classification task, which can effectively solve the problem of insufficient data marking in specific domains. In order to solve the problem of cross-domain sentiment adaptation, this article summarizes the existing studies of cross-domain sentiment classification from three perspectives, i.e., (1) it can be divided into transductive and inductive cross-domain sentiment classification methods according to whether there is labeled data in the target domain; (2) it can be divided into instance transferring based, feature transferring based, model or parameters transferring based, sentiment dictionary based, joint sentiment topic based, and graph model based methods according to different sentiment adaption strategies; (3) it can also be divided into single-source domain and multi-source domains of cross-domain sentiment classification according to the number of available source domains. In addition, it is also introduced that a new approach of deep transfer learning to solve cross-domain sentiment classification problems, and summarize its latest research results in cross-domain sentiment classification. Finally, the challenges are combined with key issues of current cross-domain sentiment classification technology and further study directions are pointed out.

    参考文献
    [1] Metaxas PT, Mustafaraj E. Social media and the elections. Science, 2012,338(6106):472-473.
    [2] Zhao CJ, Wang SG, Li DY, et al. Cross-Domain text sentiment classification based on grouping-AdaBoost ensemble. Journal of Computer Research and Development, 2015,52(3):629-638(in Chinese with English abstract).
    [3] Liu B. Sentiment analysis and opinion mining. Synthesis Lectures on Human Language Technologies, 2012,5(1):1-167.
    [4] Zhao YY, Qin B, Liu T. Sentiment analysis. Ruan Jian Xue Bao/Journal of Software, 2010,21(8):1834-1848(in Chinese with English abstract). http://www.jos.org.cn/1000-9825/3832.htm [doi: 10.3724/SP. J.1001.2010.03832]
    [5] Hirschberg J, Manning CD. Advances in natural language processing. Science, 2015,349(6245):261-266.
    [6] LeCun Y, Bengio Y, Hinton G. Deep learning. Nature, 2015,521(7553):436-444.
    [7] Schmidhuber J. Deep learning in neural networks: An overview. Neural Networks, 2015,61:85-117.
    [8] Zhao C, Wang S, Li D. Fuzzy sentiment membership determining for sentiment classification. In: Proc. of the 2014 IEEE Int'l Conf. on Data Mining Workshop. IEEE, 2014. 1191-1198.
    [9] Zhuang FZ, Luo P, He Q, Shi ZZ. Survey on transfer learning research. Ruan Jian Xue Bao/Journal of Software, 2015,26(1):26-39(in Chinese with English abstract). http://www.jos.org.cn/1000-9825/26/26.htm [doi:10.13328/j.cnki.jos.004631]
    [10] Pan SJ, Yang Q. A survey on transfer learning. IEEE Trans. on Knowledge and Data Engineering, 2009,22(10):1345-1359.
    [11] Lü SH, Yang L, Lin HF. Cross-Domain sentiment classification using SimRank. Journal of Chinese Information Processing, 2012, 26(6):38-45(in Chinese with English abstract).
    [12] Yang P, Gao W, Tan Q, et al. A link-bridged topic model for cross-domain document classification. Information Processing & Management, 2013,49(6):1181-1193.
    [13] Bao Y, Collier N, Datta A. A partially supervised cross-collection topic model for cross-domain text classification. In: Proc. of the 22nd ACM Int'l Conf. on Information & Knowledge Management. ACM, 2013. 239-248.
    [14] Xia R, Zong C. A POS-based ensemble model for cross-domain sentiment classification. In: Proc. of the 5th Int'l Joint Conf. on Natural Language Processing. ACL, 2011. 614-622.
    [15] Varghese R, Jayasree M. A survey on sentiment analysis and opinion mining. Int'l Journal of Research in Engineering and Technology, 2013,2(11):312-317.
    [16] Ben-David S, Blitzer J, Crammer K, et al. A theory of learning from different domains. Machine learning, 2010,79(1):151-175.
    [17] Aue A, Gamon M. Customizing sentiment classifiers to new domains: A case study. In: Proc. of the Int'l Conf. on Recent Advances in Natural Language Processing. 2005. 33-39.
    [18] Li S, Xue Y, Wang Z, et al. Active learning for cross-domain sentiment classification. In: Proc. of the 23rd Int'l Joint Conf. on Artificial Intelligence. AAAI, 2013. 2127-2133.
    [19] Zhuang F, Luo P, Yin P, et al. Concept learning for cross-domain text classification: A general probabilistic framework. In: Proc. of the 23rd Int'l Joint Conf. on Artificial Intelligence. AAAI, 2013. 1960-1966.
    [20] Franco-Salvador M, Cruz FL, Troyano JA, et al. Cross-Domain polarity classification using a knowledge-enhanced meta-classifier. Knowledge-Based Systems, 2015,86:46-56.
    [21] Bollegala D, Weir D, Carroll J. Cross-Domain sentiment classification using a sentiment sensitive thesaurus. IEEE Trans. on Knowledge & Data Engineering, 2013,25(8):1719-1731.
    [22] Liu K, Zhao J. Cross-Domain sentiment classification using a two-stage method. In: Proc. of the 18th ACM Conf. on Information and Knowledge Management. ACM, 2009. 1717-1720.
    [23] Bollegala D, Mu T, Goulermas JY. Cross-Domain sentiment classification using sentiment sensitive embeddings. IEEE Trans. on Knowledge and Data Engineering, 2016,28(2):398-410.
    [24] Pan SJ, Ni X, Sun JT, et al. Cross-Domain sentiment classification via spectral feature alignment. In: Proc. of the 19th Int'l Conf. on World Wide Web. ACM, 2010. 751-760.
    [25] Deshmukh JS, Tripathy AK. Entropy based classifier for cross-domain opinion mining. Applied Computing and Informatics, 2017, 4(1):55-64.
    [26] Yang WR, Wang ZQ, Li PF, et al. Adaptive domain sentimentclassification based on centroid transfer. Computer Applications and Software, 2011,28(12):26-28(in Chinese with English abstract).
    [27] Ponomareva N, Thelwall M. Do neighbours help? An exploration of graph-based algorithms for cross-domain sentiment classification. In: Proc. of the 2012 Joint Conf. on Empirical Methods in Natural Language Processing and Computational Natural Language Learning. ACL, 2012. 655-665.
    [28] Xia R, Zong C, Hu X, et al. Feature ensemble plus sample selection: Domain adaptation for sentiment classification. IEEE Intelligent Systems, 2013,28(3):10-18.
    [29] Xia R, Hu X, Lu J, et al. Instance selection and instance weighting for cross-domain sentiment classification via PU learning. In: Proc. of the 23rd Int'l Joint Conf. on Artificial Intelligence. AAAI, 2013. 2176-2182.
    [30] Lin CK, Lee YY, Yu CH, et al. Taxonomy-Based regression model for cross-domain sentiment classification. In: Proc. of the 22nd ACM Int'l Conf. on Information & Knowledge Management. ACM, 2013. 1557-1560.
    [31] Domeniconi G, Moro G, Pagliarani A, et al. Cross-Domain sentiment classification via polarity-driven state transitions in a Markov model. In: Proc. of the Int'l Joint Conf. on Knowledge Discovery, Knowledge Engineering, and Knowledge Management. Cham: Springer-Verlag, 2015. 118-138.
    [32] Zhang B, Shi ZZ, Zhao XF, et al. A transfer learning based on canonical correlation analysis across different domains. Chinese Journal of Computers, 2015,38(7):1326-1336(in Chinese with English abstract).
    [33] Zhang YH, Zhou Q, Hu XG. Feature selection for cross-domain sentiment classification. Pattern Recognition and Artificial Intelligence, 2013,26(11):1068-1072(in Chinese with English abstract).
    [34] Wei X, Lin H, Yang L. Cross-Domain sentiment classification via constructing semantic correlation. IAENG Int'l Journal of Computer Science, 2017,44(2):1-8.
    [35] Li Z, Zhang Y, Wei Y, et al. End-to-End adversarial memory network for cross-domain sentiment classification. In: Proc. of the 26th Int'l Joint Conf. on Artificial Intelligence (IJCAI). Melbourne, 2017. 2237-2243.
    [36] Bach NX, Hai VT, Phuong TM. Cross-Domain sentiment classification with word embeddings and canonical correlation analysis. In: Proc. of the 7th Symp. on Information and Communication Technology. New York: ACM, 2016. 159-166.
    [37] Glorot X, Bordes A, Bengio Y. Domain adaptation for large-scale sentiment classification: A deep learning approach. In: Proc. of the 28th Int'l Conf. on Machine Learning. ACM, 2011. 513-520.
    [38] Mehrotra R, Agrawal R, Haider SA. Dictionary based sparse representation for domain adaptation. In: Proc. of the 21st ACM Int'l Conf. on Information and Knowledge Management. ACM, 2012. 2395-2398.
    [39] Li T, Sindhwani V, Ding C, et al. Knowledge transformation for cross-domain sentiment classification. In: Proc. of the 32nd Int'l ACM SIGIR Conf. on Research and Development in Information Retrieval. ACM, 2009. 716-717.
    [40] Zhou G, Zhou Y, Guo X, et al. Cross-Domain sentiment classification via topical correspondence transfer. Neurocomputing, 2015, 159:298-305.
    [41] Huang X, Rao Y, Xie H, et al. Cross-Domain sentiment classification via topic-related TrAdaBoost. In: Proc. of the 21st AAAI Conf. on Artificial Intelligence. AAAI, 2017. 4939-4940.
    [42] Domeniconi G, Moro G, Pagliarani A, et al. Markov chain based method for in-domain and cross-domain sentiment classification. In: Proc. of the 7th Int'l Joint Conf. on Knowledge Discovery, Knowledge Engineering and Knowledge Management, Vol.1. IEEE, 2015. 127-137.
    [43] Ponomareva N, Thelwall M. Semi-Supervised vs. cross-domain graphs for sentiment analysis. In: Proc. of Recent Advances in Natural Language Processing. ACL, 2013. 571-578.
    [44] Sun Q, Chattopadhyay R, Panchanathan S, et al. A two-stage weighting framework for multi-source domain adaptation. In: Proc. of the Advances in Neural Information Processing Systems. 2011. 505-513.
    [45] Hu K, Zhang Y, Hu X. A multi-domain adaptation for sentiment classification algorithm based on class distribution. In: Proc. of the 2012 Int'l Conf. on Granular Computing (GrC). IEEE, 2012. 179-184.
    [46] Li S, Zong C. Multi-Domain adaptation for sentiment classification: using multiple classifier combining methods. In: Proc. of the Int'l Conf. on Natural Language Processing and Knowledge Engineering. IEEE, 2009. 1-8.
    [47] Zhuang F, Cheng X, Pan SJ, et al. Transfer learning with multiple sources via consensus regularized auto encoders. In: Proc. of the Joint European Conf. on Machine Learning and Knowledge Discovery in Databases. Berlin, Heidelberg: Springer-Verlag, 2014. 417-431.
    [48] Wu F, Huang Y. Sentiment domain adaptation with multiple sources. In: Proc. of the 54th Annual Meeting of the Association for Computational Linguistics. ACL, 2016. 301-310.
    [49] Sharma R, Bhattacharyya P, Dandapat S, et al. Identifying transferable information across domains for cross-domain sentiment classification. In: Proc. of the 56th Annual Meeting of the Association for Computational Linguistics, Vol.1: Long Papers. 2018. 968-978.
    [50] Peng M, Zhang Q, Jiang Y, et al. Cross-Domain sentiment classification with target domain specific information. In: Proc. of the 56th Annual Meeting of the Association for Computational Linguistics, Vol.1: Long Papers. 2018. 2505-2513.
    [51] Shi B, Fu Z, Bing L, et al. Learning domain-sensitive and sentiment-aware word embeddings. In: Proc. of the 56th Annual Meeting of the Association for Computational Linguistics, Vol.1: Long Papers. 2018. 2494-2504.
    [52] Zhang K, Zhang HF, Liu Q, Zhao HK, Zhu HS, Chen EH. Interactive attention transfer network for cross-domain sentiment classification. In: Proc. of the 33rd AAAI Conf. on Artificial Intelligence. 2019.
    [53] Zhang Y, Miao D, Wang J. Hierarchical attention generative adversarial networks for cross-domain sentiment classification. ArXiv preprint arXiv:1903.11334, 2019.
    [54] Zhang B, Xu X, Yang M, et al. Cross-Domain sentiment classification by capsule network with semantic rules. IEEE Access, 2018, 6:58284-58294.
    [55] Jia X, Jin Y, Li N, et al. Words alignment based on association rules for cross-domain sentiment classification. Frontiers of Information Technology & Electronic Engineering, 2018,19(2):260-272.
    [56] Ji J, Luo C, Chen X, et al. Cross-Domain sentiment classification via a bifurcated-LSTM. In: Proc. of the Pacific-Asia Conf. on Knowledge Discovery and Data Mining. Cham: Springer-Verlag, 2018. 681-693.
    [57] Liu W, Fu X. Introduce more characteristics of samples into cross-domain sentiment classification. In: Proc. of the 24th Int'l Conf. on Pattern Recognition (ICPR). IEEE, 2018. 25-30.
    [58] Zhang Y, Hu X, Li P, et al. Cross-Domain sentiment classification-feature divergence, polarity divergence or both? Pattern Recognition Letters, 2015,65:44-50.
    [59] Zhao CJ, Wang SG, Li DY. Multi-Source domain adaptation with joint learning for cross-domain sentiment classification. In: Proc. of the Knowledge-Based Systems. 2019. 105254. https://doi.org/10.1016/j.knosys.2019.105254
    [60] Tsakalidis A, Papadopoulos S, Kompatsiaris I. An ensemble model for cross-domain polarity classification on twitter. In: Proc. of the Int'l Conf. on Web Information Systems Engineering. Springer-Verlag, 2014. 168-177.
    [61] Remus R. Domain adaptation using domain similarity and domain complexity-based instance selection for cross-domain sentiment analysis. In: Proc. of the 12th Int'l Conf. on Data Mining Workshops (ICDMW). IEEE, 2012. 717-723.
    [62] Ziser Y, Reichart R. Neural structural correspondence learning for domain adaptation. In: Proc. of the 21st Conf. on Computational Natural Language Learning. ACL, 2017. 400-410.
    [63] He R, Lee WS, Ng HT, et al. Adaptive semi-supervised learning for cross-domain sentiment classification. In: Proc. of the 2018 Conf. on Empirical Methods in Natural Language Processing. 2018. 3467-3476.
    [64] Yang M, Yin W, Qu Q, Tu W, Shen T, Chen X. Neural attentive network for cross-domain aspect-level sentiment classification. IEEE Trans. on Affective Computing.
    [65] Manshu T, Xuemin Z. CCHAN: An end to end model for cross domain sentiment classification. IEEE Access, 2019,7: 50232-50239.
    [66] Khan FH, Qamar U, Bashir S. Enhanced cross-domain sentiment classification utilizing a multi-source transfer learning approach. In: Proc. of the Soft Computing. 2018. 1-12.
    [67] Wu Q, Tan S. A two-stage framework for cross-domain sentiment classification. Expert Systems with Applications, 2011,38(11): 14269-14275.
    [68] Wei XH, Zhang SW, Yang L, et al. Cross-Domain sentiment analysis based on weighted simrank. Pattern Recognition and Artificial Intelligence, 2013,26(11):1004-1009(in Chinese with English abstract).
    [69] Wu Q, Tan SB, Xu HB, et al. Cross-Domain opinion analysis based on random-walk model. Journal of Computer Research and Development, 2010,47(12):2123-2131(in Chinese with English abstract).
    [70] Wu Q, Liu Y, Shen HW, et al. A unified framework for cross-domain sentiment classification. Journal of Computer Research and Development, 2013,50(8):1683-1689(in Chinese with English abstract).
    [71] Wu Q, Tan S, Cheng X. Graph ranking for sentiment transfer. In: Proc. of the Joint Conf. 47th Annual Meeting of the Association for Computational Linguistics, and 4th Int'l Joint Conf. on Natural Language Processing of the AFNLP. ACL, 2009. 317-320.
    [72] Wu Q, Tan S, Cheng X, et al. MIEA: A mutual iterative enhancement approach for cross-domain sentiment classification. In: Proc. of the 23rd Int'l Conf. on Computational Linguistics: Posters. ACL, 2010. 1327-1335.
    [73] Zhang H, Li SS, Li PF, et al. Cross-Domain sentiment classification with opinion target categorization. Computer Science, 2013, 40(1):229-232(in Chinese with English abstract).
    [74] Wang L, Niu J, Song H, et al. SentiRelated: A cross-domain sentiment classification algorithm for short texts through sentiment related index. Journal of Network and Computer Applications, 2018,101:111-119.
    [75] Zhang W, Zhang H, Wang D, et al. Transfer learning by linking similar feature clusters for sentiment classification. In: Proc. of the 28th Int'l Conf. on Tools with Artificial Intelligence. IEEE, 2016. 1019-1026.
    [76] Wang D, Lu C, Wu J, et al. Softly associative transfer learning for cross-domain classification. IEEE Trans. on Cybernetics, 2019. 1-13.
    [77] Zhou JT, Pan SJ, Tsang IW. A deep learning framework for hybrid heterogeneous transfer learning. Artificial Intelligence, 2019, 275:310-328.
    [78] Taylor ME, Stone P. Cross-Domain transfer for reinforcement learning. In: Proc. of the 24th Int'l Conf. on Machine Learning. ACM, 2007. 879-886.
    [79] Blitzer J, McDonald R, Pereira F. Domain adaptation with structural correspondence learning. In: Proc. of the 2006 Conf. on Empirical Methods in Natural Language Processing. ACL, 2006. 120-128.
    [80] Al-Moslmi T, Omar N, Albared M, Al-Shabi A. Feature transfer through new statistical association measure for cross-domain sentiment analysis. Journal of Engineering and Applied Sciences, 2017,12(1):164-170.
    [81] Zhu E, Huang G, Mo B, et al. Features extraction based on neural network for cross-domain sentiment classification. In: Proc. of the Int'l Conf. on Database Systems for Advanced Applications. Switzerland: Springer-Verlag, 2016. 81-88.
    [82] Yu J, Jiang J. Learning sentence embeddings with auxiliary tasks for cross-domain sentiment classification. In: Proc. of the 2016 Conf. on Empirical Methods in Natural Language Processing. Austin: ACL, 2016. 236-246.
    [83] Mao K, Niu J, Wang X, et al. Cross-Domain sentiment analysis of product reviews by combining lexicon-based and learn-based techniques. In: Proc. of the Int'l Conf. on High Performance Computing and Communications. IEEE Computer Society, 2015. 351-356.
    [84] Molina-González MD, Martínez-Cámara E, Martín-Valdivia MT, et al. Cross-Domain sentiment analysis using spanish opinionated words. In: Proc. of the Int'l Conf. on Applications of Natural Language to Data Bases/Information Systems. Cham: Springer-Verlag, 2014. 214-219.
    [85] Steyvers M, Griffiths T. Probabilistic topic models. Handbook of Latent Semantic Analysis, 2007,427(7):424-440.
    [86] Lin C, He Y. Joint sentiment/topic model for sentiment analysis. In: Proc. of the 18th ACM Conf. on Information and Knowledge Management. ACM, 2009. 375-384.
    [87] He Y, Lin C, Alani H. Automatically extracting polarity-bearing topics for cross-domain sentiment classification. In: Proc. of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. ACL, 2011. 123-131.
    [88] Roy SD, Mei T, Zeng W, et al. Socialtransfer: Cross-domain transfer learning from social streams for media applications. In: Proc. of the 20th ACM Int'l Conf. on Multimedia. ACM, 2012. 649-658.
    [89] Nelakurthi AR, Tong H, Maciejewski R, et al. User-Guided cross-domain sentiment classification. In: Proc. of the 2017 SIAM Int'l Conf. on Data Mining. Society for Industrial and Applied Mathematics, 2017. 471-479.
    [90] Xu Z, Sun S. Multi-Source transfer learning with multi-view Adaboost. In: Proc. of the 2012 Int'l Conf. on Neural Information Processing. Berlin, Heidelberg: Springer-Verlag, 2012. 332-339.
    [91] Fang M, Guo Y, Zhang X, et al. Multi-Source transfer learning based on label shared subspace. Pattern Recognition Letters, 2015, 51:101-106.
    [92] Tan B, Zhong E, Xiang EW, et al. Multi-Transfer: Transfer learning with multiple views and multiple sources. Statistical Analysis and Data Mining: The ASA Data Science Journal, 2014,7(4):282-293.
    [93] Yoshida Y, Hirao T, Iwata T, et al. Transfer learning for multiple-domain sentiment analysis—Identifying domain dependent/ independent word polarity. In: Proc. of the 25th AAAI Conf. on Artificial Intelligence. AAAI, 2011. 1286-1291.
    [94] Zhao CJ, Wang SG, Li DY. Ensemble of deep transfer learning for cross-domain sentiment classification. Journal of Shanxi University (Natural Science Edition), 2018,41(4):709-717(in Chinese with English abstract).
    [95] Tan C, Sun F, Kong T, et al. A survey on deep transfer learning. In: Proc. of the Int'l Conf. on Artificial Neural Networks. Cham: Springer-Verlag, 2018. 270-279.
    [96] Dong X, de Melo G. A helping hand: Transfer learning for deep sentiment analysis. In: Proc. of the 56th Annual Meeting of the Association for Computational Linguistics, Vol.1: Long Papers. 2018. 2524-2534.
    [97] Cui X, Al-Bazzaz N, Bollegala D, et al. A comparative study of pivot selection strategies for unsupervised cross-domain sentiment classification. The Knowledge Engineering Review, 2018,33:e5.
    [98] Cummins N, Amiriparian S, Ottl S, et al. Multimodal bag-of-words for cross domains sentiment analysis. In: Proc. of the IEEE Int'l Conf. on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2018. 4954-4958.
    [99] Borgwardt KM, Gretton A, Rasch MJ, et al. Integrating structured biological data by kernel maximum mean discrepancy. Bioinformatics, 2006,22(14):49-57.
    [100] Duan L, Tsang IW, Xu D. Domain transfer multiple kernel learning. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2012,34(3):465-479.
    [101] Sarma PK, Liang Y, Sethares B. Domain adapted word embeddings for improved sentiment classification. In: Proc. of the Workshop on Deep Learning Approaches for Low-Resource NLP. 2018. 51-59.
    [102] Mathapati S, Nafeesa A, Manjula SH, et al. OTAWE-Optimized topic-adaptive word expansion for cross domain sentiment classification on tweets. In: Proc. of the Advances in Machine Learning and Data Science. Singapore: Springer-Verlag, 2018. 213-224.
    [103] Gupta R, Sahu S, Espy-Wilson C, et al. Semi-Supervised and transfer learning approaches for low resource sentiment classification. In: Proc. of the IEEE Int'l Conf. on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2018. 5109-5113.
    [104] Abdelwahab O, Elmaghraby A. Deep learning based vs. Markov chain based text generation for cross domain adaptation for sentiment classification. In: Proc. of the IEEE Int'l Conf. on Information Reuse and Integration (IRI). IEEE, 2018. 252-255.
    [105] Cai G, Lin Q, Chen N. Cross-Domain text sentiment classification based on wasserstein distance. In: Proc. of the Int'l Conf. on Security with Intelligent Computing and Big-data Services. Cham: Springer-Verlag, 2018. 280-291.
    [106] Gui L, Xu R, Lu Q, et al. Negative transfer detection in transductive transfer learning. Int'l Journal of Machine Learning and Cybernetics, 2018,9(2):185-197.
    [107] Xu R, Wen Z, Gui L, et al. Ensemble with estimation: seeking for optimization in class noisy data. Int'l Journal of Machine Learning and Cybernetics, 2020,11:231-248.
    [108] Peters M, Neumann M, Iyyer M, et al. Deep contextualized word representations. In: Proc. of the 2018 Conf. of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Vol.1: Long Papers. 2018. 2227-2237.
    [109] Radford A, Narasimhan K, Salimans T, et al. Improving language understanding by generative pre-training. 2018. https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/languageunsupervised/languageunderstandingpaper.pdf
    [110] Devlin J, Chang MW, Lee K, et al. Bert: Pre-training of deep bidirectional transformers for language understanding. ArXiv preprint arXiv:1810.04805, 2018.
    [111] Cui YM, Che WX, Liu T, et al. Pre-Training with whole word masking for Chinese BERT. ArXiv preprint arXiv:1906.08101. 2018.
    [112] Yang Z, Dai Z, Yang Y, et al. XLNet: Generalized autoregressive pretraining for language understanding. ArXiv preprint arXiv: 1906.08237, 2019.
    附中文参考文献:
    [2] 赵传君,王素格,李德玉,等.基于分组提升集成的跨领域文本情感分类.计算机研究与发展,2015,52(3):629-638.
    [4] 赵妍妍,秦兵,刘挺.文本情感分析.软件学报,2010,21(8):1834-1848. http://www.jos.org.cn/1000-9825/3832.htm [doi: 10.3724/SP. J.1001.2010.03832]
    [9] 庄福振,罗平,何清,史忠植.迁移学习研究进展.软件学报,2015,26(1):26-39. http://www.jos.org.cn/1000-9825/26/26.htm [doi:10. 13328/j.cnki.jos.004631]
    [11] 吕韶华,杨亮,林鸿飞.基于SimRank的跨领域情感倾向性分析算法研究.中文信息学报,2012,26(6):38-45.
    [26] 杨文让,王中卿,李培峰,等.基于质心迁移的领域适应性情感分类.计算机应用与软件,2011,28(12):26-28.
    [32] 张博,史忠植,赵晓非,等.一种基于跨领域典型相关性分析的迁移学习方法.计算机学报,2015,38(7):1326-1336.
    [33] 张玉红,周全,胡学钢.面向跨领域情感分类的特征选择方法.模式识别与人工智能,2013,26(11):1068-1072.
    [68] 魏现辉,张绍武,杨亮,等.基于加权SimRank的跨领域文本情感倾向性分析.模式识别与人工智能,2013,26(11):1004-1009.
    [69] 吴琼,谭松波,许洪波,等.基于随机游走模型的跨领域倾向性分析研究.计算机研究与发展,2010,47(12):2123-2131.
    [70] 吴琼,刘悦,沈华伟,等.面向跨领域情感分类的统一框架.计算机研究与发展,2013,50(8):1683-1689.
    [73] 张慧,李寿山,李培峰,等.基于评价对象类别的跨领域情感分类方法研究.计算机科学,2013,40(1):229-232.
    [94] 赵传君,王素格,李德玉.基于集成深度迁移学习的多源跨领域情感分类.山西大学学报:自然科学版,2018,41(4):709-717.
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

赵传君,王素格,李德玉.跨领域文本情感分类研究进展.软件学报,2020,31(6):1723-1746

复制
分享
文章指标
  • 点击次数:4063
  • 下载次数: 10313
  • HTML阅读次数: 5717
  • 引用次数: 0
历史
  • 收稿日期:2019-09-12
  • 最后修改日期:2020-02-29
  • 在线发布日期: 2020-04-21
  • 出版日期: 2020-06-06
文章二维码
您是第19761349位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号