基于贝叶斯网络的时间序列因果关系学习
作者:
作者简介:

王双成(1958-),男,博士,教授,主要研究领域为人工智能,机器学习,数据挖掘与应用.
郑飞(1967-),男,博士,副教授,CCF专业会员,主要研究领域为信息安全,机器学习.
张立(1980-),男,博士,讲师,主要研究领域为机器学习,数据挖掘.

通讯作者:

王双成,E-mail:wangsc@lixin.edu.cn

中图分类号:

TP181

基金项目:

国家社会科学基金(18BTJ020)


Learning Causal Relationship from Time Series Based on Bayesian Network
Author:
Fund Project:

National Social Science Foundation of China (18BTJ020)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [25]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    贝叶斯网络是研究变量之间因果关系的有力工具,基于贝叶斯网络的因果关系学习包括结构学习与参数学习两部分,其中,结构学习是核心.目前,贝叶斯网络主要用于发现非时间序列数据中所蕴含的因果关系(非时间序列因果关系),从数据中学习得到的也均是一般变量之间的因果关系.针对这些情况,结合时间序列预处理、时间序列变量排序、转换数据集构建和局部贪婪打分-搜索等进行时间序列的因果关系学习;再将包括分段在内的时间序列预处理、时间序列段的因果关系结构学习、因果关系结构数据集构建、因果关系变量排序和局部贪婪打分-搜索等相结合,来进行元因果关系(因果关系变量之间的因果关系)学习,从而实现两个层次的时间序列因果关系学习,为进一步的量化因果分析奠定了基础.分别使用模拟、UCI和金融时间序列数据进行实验与分析,实验结果显示,基于贝叶斯网络能够有效地进行时间序列的因果关系和元因果关系学习.

    Abstract:

    Bayesian network is a powerful tool for studying the causal relationship between variables. Causal learning, based on Bayesian network, consists of two parts:structure learning and parameter learning, while structural learning is the core of causal learning. At present, Bayesian network is mainly used to discover the causality in non-time series data (non-time series causality) and what is learned from the data is the causal relationship between general variables. In this study, the causality of time series is learned by time series preconditioning, time series variable sorting, construction of transformation data set, local greedy search-scoring, and so on. Combining the time series preconditioning including segmentation, the structure learning of causal relationship for time series segments, the construction of causality structure data set, the variable sorting of causal relationship, local greedy search-scoring, maximum likelihood parameter estimation, etc., meta causal relationship (used to study the randomness of causal relationship) is established. Thus, two levels of causality learning can be realized, and the foundation is laid for further quantitative causal analysis. Experiments and analyses are carried out by using simulation, UCI, and finance time series, the results verify the validity, reliability, and practicability of learning causal relationship and Meta causality based on Bayesian network.

    参考文献
    [1] Ferreira C. Debt and economic growth in the European Union:A panel Granger causality approach. Int'l Advances in Economic Research, 2016,22(2):131-149.
    [2] Fredrik A, Katarzyna B, Sonja O. Lending for growth? A Granger causality analysis of China's finance-growth nexus. Empirical Economics, 2016,51(3):897-920.
    [3] Chang TY, Deale D, Gupta R, et al. The causal relationship between coal consumption and economic growth in the BRICS countries:Evidence from Panel-Granger causality tests. Energy Sources, Part B:Economics, Planning, and Policy, 2017,12(2):138-146.
    [4] Kristofer M, Ghazi S, Pär S. A new ridge regression causality test in the presence of multicollinearity. Communications in Statistics:Theory and Methods, 2014,43(2):235-248.
    [5] David C, David SL, Zhuan P, et al. Inference on causal effects in a generalized regression kink design. Econometrica, 2015,83(6):2453-2483.
    [6] Ryutah K, Yuya S. On using linear quantile regressions for causal inference. Econometric Theory, 2017,33(3):664-690.
    [7] Luo W, Zhu YY, Ghosh D. On estimating regression-based causal effects using sufficient dimension reduction. Biometrika, 2017, 104(1):51-65.
    [8] Rubin D. Bayesian inference for causal effects:The role of randomization. Annals of Statistics, 1978,6(1):34-58.
    [9] Pearl J. Probabilistic Reasoning in Intelligent Systems:Networks of Plausible Inference. San Mateo:Morgan Kaufmann Publishers, 1988.383-408.
    [10] Heckman JJ. The scientific model of causality. Sociological Methodology, 2005,35(1):1-97.
    [11] John A, Rafael L. Counterfactuals and causal inference:Methods and principles for social research by Stephen L. Morgan & Christopher winship. Structural Equation Modeling, 2011,18(1):152-159.
    [12] Kullback C, Weiss S. Representation of expert knowledge for consultation:The CASNET and EXPERT projects. Artificial Intelligence in Medicine, 1982,1(4):21-55.
    [13] Cheng J, Greiner R, Kelly J. Learning Bayesian networks from data:An efficient approach based on information-theory. Artificial Intelligence, 2002,137(1-2):43-90.
    [14] Liu XQ, Liu XS. Swamping and masking in Markov boundary discovery. Machine Learning, 2016,104(1):25-54.
    [15] Parviainen P, Kaski S. Learning structures of Bayesian networks for variable groups. Int'l Journal of Approximate Reasoning, 2017, 88(5):110-127.
    [16] Xiao C, Jin Y, Liu J, et al. Optimal expert knowledge elicitation for Bayesian network structure identification. IEEE Trans. on Automation Science & Engineering, 2018,PP(99):1-15.
    [17] Heckerman D, Geiger D, Chickering DM. Learning Bayesian networks:The combination of knowledge and statistical data. Machine Learning, 1997,20(3):197-243.
    [18] Suzuki J. A theoretical analysis of the BDEU scores in Bayesian network structure learning. Behaviormetrika, 2016,1(1):1-20.
    [19] Gheisari S, Meybodi MR, Dehghan M, et al. Bayesian network structure training based on a game of learning automata. Int'l Journal of Machine Learning and Cybernetics, 2017,8(4):1093-1105.
    [20] Liu X, Liu X. Structure learning of Bayesian networks by continuous particle swarm optimization algorithms. Journal of Statistical Computation & Simulation, 2018,88(9):1-29.
    [21] Friedman N, Murphy KP, Russell S. Learning the structure of dynamic probabilistic networks. In:Proc. of the 14th Int'l Conf. on Uncertainty in Artificial Intelligence. Madison, 1998.139-147.
    [22] Wang SC, Leng CP, Li XL. Learning Bayesian network structure from small data set. Acta Automatica Sinica, 2009,35(8):1063-1070(in Chinese with English abstract).
    [23] Lähdesmäki H, Shmulevich I. Learning the structure of dynamic Bayesian networks from time series and steady state measurements. Machine Learning, 2008,71(2-3):185-217.
    附中文参考文献:
    [22] 王双成,冷翠平,李小琳.小数据集中的贝叶斯网络结构学习.自动化学报,2009,35(8):1063-1070.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

王双成,郑飞,张立.基于贝叶斯网络的时间序列因果关系学习.软件学报,2021,32(10):3068-3084

复制
分享
文章指标
  • 点击次数:2481
  • 下载次数: 6088
  • HTML阅读次数: 2750
  • 引用次数: 0
历史
  • 收稿日期:2018-10-23
  • 最后修改日期:2019-11-06
  • 在线发布日期: 2021-01-15
  • 出版日期: 2021-10-06
文章二维码
您是第19791829位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号