扫地机器人增强位姿融合的Cartographer算法及系统实现
作者:
作者简介:

张亮(1975-),男,博士,副教授,CCF专业会员,主要研究领域为嵌入式多核系统,机器人语义SLAM,深度学习和计算机视觉,三维场景语义分割,手势识别,图像处理;蒋得志(1994-),男,硕士,主要研究领域为语义SLAM;刘智宇(1993-),男,硕士生,主要研究领域为机器人同步定位与建图;梅林(1975-),男,博士,研究员,主要研究领域为计算机视觉,人工智能,物联网应用,大数据处理;曹晶瑛(1984-),男,学士,主要研究领域为分布计算,可信计算与信息安全;朱光明(1975-),男,博士,讲师,CCF专业会员,主要研究领域为深度学习,手势识别;沈沛意(1975-),男,博士,教授,CCF专业会员,主要研究领域为计算机视觉,语义结构图,大数据;苗启广(1972-),男,博士,教授,博士生导师,CCF杰出会员,主要研究领域为计算机视觉,机器学习,大数据分析.

通讯作者:

沈沛意,E-mail:pyshen@xidian.edu.cn

基金项目:

国家自然科学基金(61401324,61305109);陕西省重点研发计划(2018ZDXM-GY-36)


Cartographer Algorithm and System Implementation Based on Enhanced Pose Fusion of Sweeping Robot
Author:
Fund Project:

National Natural Science Foundation of China (61401324, 61305109); Shaanxi Province Key Research and Development Program (2018ZDXM-GY-36)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [29]
  • |
  • 相似文献
  • | | |
  • 文章评论
    摘要:

    Cartographer是谷歌在2016年开源的一个可以在多传感器配置下实现低计算资源消耗的SLAM算法框架.针对原有Cartographer中位姿融合不准确、存在延迟的问题,首先设计了一种基于位姿增量的多传感器位姿融合方法;随后,针对扫地机器人Player平台,设计并实现了基于增强Cartographer算法的多模块SLAM系统;最后,通过Cartographer数据集的实验分析和真实场景的实际测试,验证了增强Cartographer算法的有效性以及SLAM系统在Player机器人平台上的可用性.

    Abstract:

    Cartographer is Google's 2016 open source SLAM algorithm framework for low computational resource consumption in multi-sensor configurations. In this study, due to the inaccurate middle posture fusion and delay of the original Cartographer, a multi- sensor posture fusion method based on posture increment was designed. Subsequently, the multi-module SLAM system based on enhanced Cartographer algorithm was designed and implemented for the cleaning robot Player platform. Finally, the effectiveness of the enhanced Cartographer algorithm and the usability of the SLAM system on the Player robot platform were verified by the experimental analysis of the Cartographer data set and the actual test of the real scenario.

    参考文献
    [1] Leonard JJ, Durrant-Whyte HF. Mobile robot localization by tracking geometric beacons. IEEE Robotics and Automation, 1991, 7(3):376-382.
    [2] Liang Z, Peiyi S, Guangming Z, et al. A fast robot identification and mapping algorithm based on kinect sensor. Sensors, 2015, 15(8):19937-19967.
    [3] Zhang L, Shen P, Ding J, et al. An improved RGB-D SLAM algorithm based on Kinect sensor. In:Proc. of the IEEE Int'l Conf. on Advanced Intelligent Mechatronics. IEEE, 2015.
    [4] Nister D, Narodisky O, Bergen J. Visual odometry for ground vehicle applications. Journal of Field Robotics, 2006,23(1):3-20.
    [5] Alin A, Butz MV. Improved tracking and behavior anticipation by combining street map information with bayesian-filtering. In:Proc. of the Int'l IEEE Conf. on Intelligent Transportation Systems. IEEE, 2014.
    [6] Grisetti G, KuMmerle R, Stachniss C, et al. A tutorial on graph-based SLAM. Intelligent Transportation Systems Magazine IEEE, 2010,2(4):31-43.
    [7] Ho KL, Newman P. Loop closure detection in SLAM by combining visual and spatial appearance. Robotics and Autonomous Systems, 2006,54(9):740-749.
    [8] Hess W, Kohler D, Rapp H, et al. Real-time loop closure in 2D LIDAR SLAM. In:Proc. of the 2016 IEEE Int'l Conf. on Robotics and Automation (ICRA). IEEE, 2016.
    [9] Isbell JR. Six theorems about injective metric spaces. Commentarii Mathematici Helvetici, 1964,39:65-76.[doi:10.1007/BF02566944]
    [10] Lee YC, Yu W, Lim JH, et al. Sonar grid map based localization for autonomous mobile robots. In:Proc. of the 2008 IEEE/ASME Int'l Conf. on Mechtronic and Embedded Systems and Applicationbs. 2008.558-563.
    [11] Lu F, Milios E. Globally consistent range scan alignment for environment mapping. Autonomous Robots, 1997,4(4):333-349.
    [12] Martín F, Triebel R, Moreno L, Siegwart R. Two different tools for three-dimensional mapping:DE-based scan matching and feature-based loop detection. Robotica, 2014,32(1):19-41.
    [13] Agarwal S, Mierle K, et al. Ceres solver. http://ceres-solver.org
    [14] Julier S, Uhlmann JK. A new extension of the Kalman filter to nonlinear systems. In:Proc. of the Int'l Symp. on Aerospace/Defense Sensing, Simul. and Controls. Signal Processing, Sensor Fusion, and Target Recognition VI. 3.1997.182.
    [15] Konolige K, Grisetti G, Kümmerle R, et al. Sparse pose adjustment for 2D mapping. In:Proc. of the IROS. 2010.
    [16] Land AH, Doig AG. An automatic method of solving discrete programming problems. Econometrica, 1960,28(3):497-520.
    [17] Clausen J. Branch and bound algorithms-principles and examples. Department of Computer Science, University of Copenhagen, 1999.1-30.
    [18] Gerkey B, Vaughan R, Howard A. The player/stage project:Tools for multi-robot and distributed sensor systems. In:Proc. of the Int'l Conf. on Advanced Robotics. 2003.317-323.
    [19] Collet THJ, MacDonald BA, Gerkey B. Player 2.0:Toward a practical robot programming framework. In:Proc. of the Australasian Conf. on Robotics and Automation (ACRA). 2005.
    [20] ROS. http://wiki.ros.org/
    [21] Schuytema P, Manyen M, Wrote; Tian J, Trans. Game Development with Lua. Beijing:China Machine Press, 2013(in Chinese).
    [22] Frequently Asked Questions|Protocol Buffers. Google Developers, 2016.
    [23] Bai W, Li G, Han L. Correction algorithm of LIDAR data for mobile robots. 2017.
    [24] Hoag D. Apollo guidance and navigation-considerations of apollo IMU gimbal lock-MIT instrumentation laboratory document E-1344.1963.
    [25] Konolige K, Augenbraun J, Donaldson N, Fiebig C, Shah P. A low-cost laser distance sensor. In:Proc. of the IEEE Int'l Conf. on Robotics and Automation (ICRA 2008). IEEE, 2008.3002-3008.
    [26] Kümmerle R, Steder B, Dornhege C, Ruhnke M, Grisetti G, Stachniss C, Kleiner A. On measuring the accuracy of SLAM algorithms. Autonomous Robots, 2009,27(4):387-407.
    [27] Zhang L, Wei L, Shen P, et al. Semantic SLAM based on object detection and improved octomap. IEEE Access, 2018:1-1.
    附中文参考文献:
    [21] Schuytema P, Manyen M,著;田剑,译.Lua游戏开发实践指南.北京:机械工业出版社,2013.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

张亮,刘智宇,曹晶瑛,沈沛意,蒋得志,梅林,朱光明,苗启广.扫地机器人增强位姿融合的Cartographer算法及系统实现.软件学报,2020,31(9):2678-2690

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2019-06-27
  • 最后修改日期:2019-08-18
  • 在线发布日期: 2020-01-17
  • 出版日期: 2020-09-06
文章二维码
您是第19728130位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号