基于PSP_HDP主题模型的非结构化经济指标挖掘
CSTR:
作者:
作者单位:

作者简介:

张奕韬(1984-),女,江西进贤人,博士生,主要研究领域为Web数据管理,数据挖掘,自然语言处理;江腾蛟(1976-),女,博士,副教授,主要研究领域为数据挖掘,情感分析,Web数据管理;万常选(1962-),男,博士,教授,博士生导师,CCF杰出会员,主要研究领域为Web数据管理,数据挖掘,情感分析,信息检索;刘德喜(1975-),男,博士,教授,博士生导师,CCF高级会员,主要研究领域为社会媒体处理,信息检索,自然语言处理;刘喜平(1981-),男,博士,副教授,CCF专业会员,主要研究领域为数据库,数据挖掘,信息检索;廖国琼(1969-),男,博士,教授,博士生导师,CCF高级会员,主要研究领域为数据库,数据挖掘,社会网络.

通讯作者:

万常选,E-mail:wanchangxuan@263.net

中图分类号:

基金项目:

国家自然科学基金(61972184,61562032,61662027,61762042);江西省自然科学基金(20152ACB20003)


Mining Unstructured Economic Indicators Based on PSP_HDP Topic Model
Author:
Affiliation:

Fund Project:

National Natural Science Foundation of China (61972184, 61562032, 61662027, 61762042); Natural Science Foundation of Jiangxi Province of China (20152ACB20003)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    随着经济活动数据的不断丰富,互联网平台上产生了大量的财经文本,其中蕴含了经济领域发展状况的影响因素.如何从这些财经文本中有效地挖掘与经济有关的经济要素,是实现非结构化数据在经济研究中应用的关键.根据人工构建非结构化经济指标的局限性,以及主题模型在非结构化经济指标挖掘中存在的问题,结合已有经济领域分类标准、词语之间的语义关系和词语对主题的代表性,定义了文档的领域隶属度、词语与主题的语义相关度和词语对主题的贡献度,用于分别描述CRF(Chinese restaurant franchise)中餐厅的菜肴风格、顾客之间对菜肴要求的一致程度和顾客对菜肴的专一程度;结合文档领域属性、词语语义和词语在主题中的出现情况,提出了PSP_HDP(combining documents' domain properties,word semantics and words' presences in topics with HDP)主题模型.由于PSP_HDP主题模型改进了文档-主题与主题-词语的分配过程,从而提高了经济主题的区分度和辨识度,可以更有效地挖掘与经济有关的经济主题和经济要素词.实验结果表明:提出的PSP_HDP主题模型不仅在主题多样性、内容困惑度和模型复杂度等评价指标方面的整体性能优于HDP主题模型,而且在非结构化经济指标挖掘和经济要素词抽取方面能够得到区分度更好、辨识度更高的结果.

    Abstract:

    With the increasing enrichment of economic activity data, a large number of financial texts have emerged on Internet, which contains the influence factors of the economic development. How to mine these economic factors from these texts is the key to conduct economic analysis based on unstructured data. Due to the limitation of manual selection of economic indicators, and the inaccuracy of modelling economic indicators in unstructured texts, the CRF (Chinese restaurant franchise) allocation processes in HDP topic model are extended to a more efficient pattern. In order to describe the dish style in a restaurant, the existing economic taxonomies are used to determine the domain membership of a document. The semantic similarity between words is exploited to define the semantic relevance between words and topics, which reflect the similarity of customers' requirements for dishes. For each word, its representativeness of each topic is employed to evaluate its contribution to the topic, which explains the loyalty of a customer to each dish. By combining documents' domain properties, word semantics and words' presence in topics with HDP topic model, a novel model, PSP_HDP topic model, is proposed. As the PSP_HDP topic model improves documents-topics and topics-words allocation processes, it increases the accuracy of identifying economic topics and distinctiveness of the topics, which leads to a more effective mining of economic topics and economic factors. Experimental results show that the proposed model not only achieves a better performance in terms of topic diversity, topic perplexity and topic complexity, but also is effective in finding more cohesive unstructured economic indicators and economic factors.

    参考文献
    相似文献
    引证文献
引用本文

张奕韬,万常选,刘喜平,江腾蛟,刘德喜,廖国琼.基于PSP_HDP主题模型的非结构化经济指标挖掘.软件学报,2020,31(3):845-865

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2019-07-05
  • 最后修改日期:2019-09-10
  • 录用日期:
  • 在线发布日期: 2020-01-10
  • 出版日期: 2020-03-06
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号