行程时间预测方法研究
作者:
作者简介:

柏梦婷(1999-),女,学士,主要研究领域为机器学习,深度学习在智能交通领域的应用.
林杨欣(1992-),男,学士,主要研究领域为智能交通系统.
马萌(1986-),男,博士,副研究员,CCF专业会员,主要研究领域为物联网,智能感知计算,复杂事件处理.
王平(1961-),男,博士,教授,博士生导师,CCF专业会员,主要研究领域为网络安全,智能计算与感知,操作系统与中间件.

通讯作者:

马萌,E-mail:mameng@pku.edu.cn;王平,E-mail:pwang@pku.edu.cn

基金项目:

国家重点研发计划(2017YFB1200700);国家自然科学基金(61701007)


Survey of Traffic Travel-time Prediction Methods
Author:
Fund Project:

National Key Research and Development Program of China (2017YFB1200700); National Natural Science Foundation of China (61701007)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [109]
  • |
  • 相似文献
  • | | |
  • 文章评论
    摘要:

    行程时间预测,有助于实施高级旅行者信息系统.自20世纪90年代起,已经有多种行程时间预测方法被研发出来.将行程时间预测方法分为模型驱动方法和数据驱动方法两大类.介绍了两种常见的模型驱动方法,即排队论模型和细胞传输模型.数据驱动方法被分类为参数方法和非参数方法:参数方法包括线性回归、自回归集成移动平均和卡尔曼滤波,非参数方法包括神经网络、支持向量回归、最近邻和集成学习方法.对现有行程时间预测方法从源数据、预测范围、准确率、优缺点和适用范围等方面进行了分析总结.针对现有方法的一些缺点,提出了可能的解决方案.给出了一种新颖的数据预处理框架和一个行程时间预测模型,最后指出了未来的研究方向.

    Abstract:

    Travel-time prediction can help implement advanced traveler information systems. In recent years, a variety of travel-time prediction methods have been developed. In this study, travel-time prediction methods are classified into two categories: model-driven and data-driven methods. Two common model-driven approaches are elaborated, namely queuing theory and cell transmission model. The data-driven methods are classified into parametric and non-parametric methods. Parametric methods include linear regression, autoregressive integrated moving average, and Kalman filtering. Non-parametric methods contain neural networks, support vector regression, nearest neighbors, and ensemble learning methods. Existing travel-time prediction methods are analyzed and concluded from source data, prediction range, accuracy, advantages, disadvantages, and application scenarios. Several solutions are proposed for some shortcomings of existing methods. A novel data preprocessing framework and a travel-time prediction model are presented, and future research challenges are highlighted.

    参考文献
    [1] Mahmassani, HS, Peeta S. System optimal dynamic assignment for electronic route guidance in a congested traffic network. In:Proc. of the Urban Traffic Networks:Dynamic Flow Modeling and Control. Berlin, Heidelberg:Springer-Verlag, 1995. 3-37.
    [2] Ho FS, Ioannou P. Traffic flow modeling and control using artificial neural networks. IEEE Control Systems Magazine, 1996,16(5):16-26.
    [3] Chabini, Ismail. Discrete dynamic shortest path problems in transportation applications:Complexity and algorithms with optimal run time. Transportation Research Record:Journal of the Transportation Research Board, 1998,1645:170-175.
    [4] Stephanedes YJ, Chassiakos AP. Freeway incident detection through filtering. Transportation Research Part C (Emerging Technologies), 1993,1(3):219-233.
    [5] Figueiredo L, Jesus I, Machado JAT, Ferreira JR, Carvalho JLMD. Towards the development of intelligent transportation systems. In:Proc. of the Intelligent Transportation Systems. IEEE, 2001. 1206-1211.
    [6] Zhang J, Wang FY, Wang K, Lin WH, Xu X, Chen C. Data-Driven intelligent transportation systems:A survey. IEEE Trans. on Intelligent Transportation Systems, 2011,12(4):1624-1639.
    [7] Khattak AJ, Targa F, Yim Y. Advanced Traveler Information Systems. 2004.
    [8] Heathington KW. On the development of a freeway driver information system. In:Proc. of the Real Time Information. 1969.
    [9] Zhang Y, Haghani A. A gradient boosting method to improve travel time prediction. Transportation Research Part C:Emerging Technologies, 2015,58:308-324.
    [10] Wisitpongphan N, Jitsakul W, Jieamumporn D. Travel time prediction using multi-layer feed forward artificial neural network. In:Proc. of the 4th Int'l Conf. on Computational Intelligence. IEEE, 2012. 326-330.
    [11] Chen H, Rakha HA. Multi-Step prediction of experienced travel times using agent-based modeling. Transportation Research Part C:Emerging Technologies, 2016,71:108-121.
    [12] Wei CH, Lee Y. Development of freeway travel time forecasting models by integrating different sources of traffic data. IEEE Trans. on Vehicular Technology, 2007,56(6):3682-3694.
    [13] Yeon J, Elefteriadou L, Lawphongpanich S. Travel time estimation on a freeway using discrete time Markov chains. Transportation Research Part B:Methodological, 2008,42(4):325-338.
    [14] Chrobok R, Hafstein SF, Pottmeier A. OLSIM:A new generation of traffic information systems. Journal of Information Science & Technology, 2013,3(2):883-886.
    [15] Messmer A, Papageorgiou M. METANET:A macroscopic simulation program for motorway networks. Traffic Engineering and Control, 1990,31(8):466-470.
    [16] Oh S, Byon YJ, Jang K, Yeo H. Short-Term travel-time prediction on highway:A review on model-based approach. KSCE Journal of Civil Engineering, 2018,22(1):298-310.
    [17] Takaba S, Morita T, Hada T, Usami T. Estimation and measurement of travel time by vehicle detectors and license plate readers. In:Proc. of the Vehicle Navigation and Information Systems Conf. 1991. 257-267.
    [18] Daganzo C. The Cell Transmission Model. Part I:A Simple Dynamic Representation of Highway Traffic. 1992. 288.
    [19] Chrobok R. Theory and Application of Advanced Traffic Forecast Methods. 2005.
    [20] Hinsbergen CPI, Lint JWCV, Sanders FM. Short term traffic prediction models. In:Proc. of the 14th World Congress on Intelligent Transport Systems. 2007. 7.
    [21] Yu J, Chang GL, Ho HW, Liu Y. Variation based online travel time prediction using clustered neural networks. In:Proc. of the IEEE Int'l Conf. on Intelligent Transportation Systems. 2008. 85-90.
    [22] Fei X, Lu CC, Liu K. A Bayesian dynamic linear model approach for real-time short-term freeway travel time prediction. Transportation Research Part C, 2011,19(6):1306-1318.
    [23] Oh S, Byon YJ, Jang K, Yeo H. Short-Term travel-time prediction on highway:A review of the data-driven approach. Transport Reviews, 2015,35(1):4-32.
    [24] J Kwon J, Coifman B, Bickel P. Day-to-Day traveltime trends and travel-time prediction from LoopDetector data. Transportation Research Record:Journal of the Transportation Research Board, 2000,1717:120-129.[doi:10.3141/1717-15]
    [25] Box GEP, Jenkins GM. Time series analysis, forecasting and control. Journal of the American Statistical Association, 1971,134(3):343-344.
    [26] Okutani I, Stephanedes YJ. Dynamic prediction of traffic volume through Kalman filtering theory. Transportation Research Part B:Methodological, 1984,18(1):1-11.
    [27] Rumelhart DE, Hinton GE, Williams RJ. Learning representations by back-propagating errors. Nature, 1986,323(6088):399-421.
    [28] Yandell, Brian S. Spline smoothing and nonparametric regression. Technometrics, 1989,31(3):379-380.
    [29] Bai MT, Lin YX, Ma M, Wang P. Travel-Time prediction methods:A review. In:Proc. of the 3rd Int'l Conf. on SmartCom 2018. 2018. 67-77.[doi:10.1007/978-3-030-05755-8_7]
    [30] Hopfield JJ. Neural networks and physical systems with emergent collective computational abilities. Proc. of the National Academy of Sciences of the United States of America, 1982,79(8):2554-2558.
    [31] Hochreiter S, Schmidhuber J. LSTM can solve hard long term lag problems. In:Proc. of the Neural Information Processing Systems Nips. 1997. 9.
    [32] Van Lint J, Hoogendoorn S, Van Zuylen H. Freeway travel time prediction with state-space neural networks:Modeling state-space dynamics with recurrent neural networks. Transportation Research Record Journal of the Transportation Research Board, 2002,1811:30-39.
    [33] Thissen U, Brakel RV, Weijer APD, Melssen WJ, Buydens LMC. Using support vector machines for time series prediction. Chemometrics and Intelligent Laboratory Systems, 2003,69(1-2):35-49.
    [34] Müller KR, Smola AJ, Rätsch G, Schölkopf B, Kohlmorgen J, Vapnik V. Predicting time series with support vector machines. LNCS, 1997,20(2):999-1004.
    [35] Kachroo P, Ozbay K, Hobeika AG. Real-Time travel time estimation using macroscopic traffic flow models. In:Proc. of the IEEE Intelligent Transportation Systems. 2001. 132-137.
    [36] Xu T, Hao Y, Sun L. Travel time prediction of urban expressway in unstable traffic flow. In:Proc. of the Int'l Conf. on Transportation Engineering. 2007. 2205-2210.
    [37] Skabardonis A, Geroliminis N. Real-Time estimation of travel times along signalized arterials. In:Proc. of the Transportation and Traffic Theory. 2005.[doi:10.1016/b978-008044680-6/50022-2]
    [38] Ben-Akiva M, Bierlaire M, Burton D, Koutsopoulos HN, Mishalani R. Network state estimation and prediction for real-time traffic management. Networks and Spatial Economics, 2001,1(3-4):293-318.
    [39] Daganzo CF. The cell transmission model:A dynamic representation of highway traffic consistent with the hydrodynamic theory. Transportation Research, Part B (Methodological), 1994,28(4):269-287.
    [40] Daganzo CF. A continuum theory of traffic dynamics for freeways with special lanes. Transportation Research Part B (Methodological), 1997,31(2):83-102.
    [41] Daganzo CF. An Enhanced Cell-Transmission Rule for Traffic Simulation. 1997.
    [42] Tampere CMJ, Immers B. Traffic State Estimation and Prediction Using the Cell Transmission Model with Implicit Mode Switching and Dynamic Parameters. 2007.
    [43] Juri NR, Unnikrishnan A, Waller ST. Integrated traffic simulation-statistical analysis framework for online prediction of freeway travel time. Transportation Research Record Journal of the Transportation Research Board, 2007,2039:24-31.
    [44] Xiong Z, Rey D, Mao T, Liu H. A three-stage framework for motorway travel time prediction. In:Proc. of the IEEE Int'l Conf. on Intelligent Transportation Systems. 2014. 816-821.
    [45] Wan N, Gomes G, Vahidi A, Horowitz R. Prediction on travel-time distribution for freeways using online expectation maximization algorithm. In:Proc. of the Transportation Research Board 93rd Annual Meeting. 2014.
    [46] Seybold C. Calibration of fundamental diagrams for travel time predictions based on the cell transmission model. In:Proc. of the VS Verlag für Sozialwissenschaften. 2015. 207-220.
    [47] Zhang X, Rice JA. Short-Term travel time prediction. Transportation Research Part C (Emerging Technologies), 2003,11(3-4):187-210.
    [48] Rice J, Vanzwet E. A simple and effective method for predicting travel times on freeways. IEEE Trans. on Intelligent Transportation Systems, 2004,5(3):200-207.
    [49] Sun H, Liu H, Xiao H, He R, Ran B. Use of local linear regression model for short-term traffic forecasting. Transportation Research Record:Journal of the Transportation Research Board, 2003,1836:143-150.
    [50] Oda T. An algorithm for prediction of travel time using vehicle sensor data. In:Proc. of the Int'l Conf. on Road Traffic Control. 1990. 40-44.
    [51] Saito M, Watanabe T. Prediction and dissemination system for travel time utilizing vehicle detectors. In:Proc. of the Steps Forward, Intelligent Transport Systems World Congress. 1995.
    [52] Ishak S, Al-Deek H. Performance evaluation of short-term time-series traffic prediction model. Journal of Transportation Engineering, 2002,128(6):490-498.
    [53] Voort MVD, Dougherty M, Watson S. Combining kohonen maps with arima time series models to forecast traffic flow. Transportation Research Part C (Emerging Technologies), 1996,4(5):307-318.
    [54] Zhicharevich A, Margalit Y. Travel Time Prediction Problem RTA Freeway.
    [55] Williams BM, Hoel LA. Modeling and forecasting vehicular traffic flow as a seasonal ARIMA process:Theoretical basis and empirical results. Journal of Transportation Engineering, 2003,129(6):664-672.
    [56] Xia J, Chen M, Huang W. A multistep corridor travel-time prediction method using presence-type vehicle detector data. Journal of Intelligent Transportation Systems, 2011,15(2):104-113.
    [57] Sun J, Zhang C, Chen SK, Xue R, Peng ZR. Route travel time estimation based on seasonal model and Kalman filtering algorithm. Journal of Changan University, 2014,34(6):145-151.
    [58] Okutani I. The Kalman filtering approaches in some transportation and traffic problems. In:Proc. of the Transportation and Traffic Theory. 1987.
    [59] Stephanedes YJ, Kwon E. Adaptive demand-diversion prediction for integrated control of freeway corridors. Transportation Research Part C, 1993,1(1):23-42.
    [60] Yang JS. Travel time prediction using the GPS test vehicle and Kalman filtering techniques. In:Proc. of American Control Conf., 2005. 2128-2133.
    [61] Ji H, Xu A, Sui X, Sui X, Li L. The applied research of Kalman in the dynamic travel time prediction. In:Proc. of the 18th Int'l Conf. on Geoinformatics:GIScience in Change, Geoinformatics 2010. 2010. 1-5.
    [62] Chen M, Chien S. Dynamic freeway travel-time prediction with probe vehicle data:Link based versus path based. Transportation Research Record Journal of the Transportation Research Board, 2001,1768(1):157-161.
    [63] Ojeda LRL, Kibangou AY, Wit CCD. Online dynamic travel time prediction using speed and flow measurements. In:Proc. of the Control Conf. 2013. 4045-4050.
    [64] Liu X, Chien SI, Chen M. An adaptive model for highway travel time prediction. Journal of Advanced Transportation, 2015,48(6):642-654.
    [65] Gross D, Craig RJ. A comparison of maximum likelihood, exponential smoothing and Bayes forecasting procedures in inventory modelling. Int'l Journal of Production Research, 1974,12(5):607-622.
    [66] Makridakis S. The accuracy of extrapolation (time series) methods:Results of a forecasting competition. Journal of Forecasting, 2010,1(2):111-153.
    [67] Pitts. History of Neural Computing. 1943.
    [68] Krizhevsky A, Sutskever I, Hinton G. ImageNet classification with deep convolutional neural networks. In:Proc. of the Int'l Conf. on Neural Information Processing Systems. 2012. 1097-1105.
    [69] Erb M, Aertsen A. Dynamics of Activity in Biology-Oriented Neural Network Models:Stability at Low Firing Rates. 1992. 201-223.
    [70] Samant A, Adeli H. Enhancing neural network traffic incident-detection algorithms using wavelets. Computer-Aided Civil and Infrastructure Engineering, 2002,16(4):239-245.
    [71] Park D, Rilett LR. Forecasting freeway link travel times with a multilayer feedforward neural network. Computer-Aided Civil and Infrastructure Engineering, 2010,14(5):357-367.
    [72] Chen D, Zhang K, Liao T. Practical travel time prediction algorithms based on neural network and data fusion for urban expressway. In:Proc. of the 6th Int'l Conf. on Natural Computation. 2010. 1754-1758.
    [73] Yun SY, Namkoong S, Rho JH, Shin SW, Choi JU. A performance evaluation of neural network models in traffic volume forecasting. Mathematical and Computer Modelling, 1998,27(9-11):293-310.
    [74] Wan EA. Modeling nonlinear dynamics with neural networks:Examples in time series prediction. In:Proc. of SPIE, 1993. 327-232.
    [75] Abdulhai B, Porwal H, Recker W. Short Term Freeway Traffic Flow Prediction Using Genetically-Optimized Time-Delay-Based Neural Networks. 1999.
    [76] Dia H. An object-oriented neural network approach to short-term traffic forecasting. European Journal of Operational Research, 2001,131(2):253-261.
    [77] Duan Y, Lv Y, Wang FY. Travel time prediction with LSTM neural network. In:Proc. of the IEEE Int'l Conf. on Intelligent Transportation Systems. 2016. 1053-1058.
    [78] Wang FY, Duan YJ, Lv YS, Chen YY, Lin YL, Liu YL. One kind of link travel time forecasting method based on the lstm. Patent CN106096767A, 2016(in Chinese).
    [79] Liu Y, Wang Y, Yang X, Zhang L. Short-Term travel time prediction by deep learning:A comparison of different LSTM-DNN models. In:Proc. of the IEEE Int'l Conf. on Intelligent Transportation Systems. 2017. 1-8.
    [80] J Lint JWCV, Hoogendoorn SP, Zuylen HJV. Accurate travel time prediction with state-space neural networks under missing data. Transportation Research Part C Emerging Technologies, 2005,13(s 5-6):347-369.
    [81] Li X, Wang C, Shi H. A travel time prediction method:Bayesian reasoning state-space neural network. In:Proc. of the 20102nd Int'l Conf. on Information Science and Engineering (ICISE). 2010. 936-940.
    [82] Vapnik V. The nature of statistical learning theory. Technometrics, 1995,38(4):409-409.
    [83] Wu CH, Ho JM, Lee DT. Travel-Time prediction with support vector regression. IEEE Trans. on Intelligent Transportation Systems, 2004,5(4):276-281.
    [84] Castro-Neto M, Jeong YS, Jeong MK, Han LD. Online-SVR for short-term traffic flow prediction under typical and atypical traffic conditions. Expert Systems with Applications, 2009,36(3):6164-6173.
    [85] Gao P, Hu J, Zhou H, Zhang Y. Travel time prediction with immune genetic algorithm and support vector regression. In:Proc. of the World Congress on Intelligent Control and Automation. 2016. 987-992.
    [86] Tan GZ, Zhou DM, Jiang B, Dioubate MI. Elitism-Based immune genetic algorithm and its application to optimization of complex multi-modal functions. Journal of Central South University of Technology, 2008,15(6):845-852.
    [87] Smith BL, Williams BM, Oswald RK. Comparison of parametric and nonparametric models for traffic flow forecasting. Transportation Research Part C (Emerging Technologies), 2002,10(4):303-321.
    [88] Bajwa SI, Chung E, Kuwahara M. Performance evaluation of an adaptive travel time prediction model. In:Proc. of the IEEE Intelligent Transportation Systems. 2005. 1000-1005.
    [89] Lim S, Lee C. Data fusion algorithm improves travel time predictions. IET Intelligent Transport Systems, 2011,5(4):302-309.
    [90] Wang JY, Wong KI, Chen YY. Short-Term travel time estimation and prediction for long freeway corridor using NN and regression. In:Proc. of the Int'l IEEE Conf. on Intelligent Transportation Systems. 2012. 582-587.
    [91] Tak S, Kim S, Oh S, Yeo H. Development of a data-driven framework for RealTime travel time prediction. Computer-Aided Civil and Infrastructure Engineering, 2016,31(10):777-793.
    [92] Hamner B. Predicting travel times with context-dependent random forests by modeling local and aggregate traffic flow. In:Proc. of the IEEE Int'l Conf. on Data Mining Workshops. 2011. 1357-1359.
    [93] Liaw A, Wiener M. Classification and regression by randomForest. R News, 2002,2(3):18-22.
    [94] Yu B, Wang H, Shan W, Yao B. Prediction of bus travel time using random forests based on near neighbors. Computer-aided Civil and Infrastructure Engineering, 2017,33(2):333-350.
    [95] Gupta B, et al. Taxi Travel Time Prediction Using Ensemble-based Random Forest and Gradient Boosting Model. 2018.
    [96] Wu X, Zhu X. Mining with noise knowledge:Error-aware data mining. IEEE Trans. on Systems, Man, and Cybernetics-Part A:Systems and Humans, 2008,38(4):917-932.
    [97] Qu L, Hu J, Li L, Zhang Y. PPCA-Based missing data imputation for traffic flow volume:A systematical approach. IEEE Trans. on Intelligent Transportation Systems, 2009,10(3):512-522.
    [98] Chen C, Wang Y, Li L, Hu J, Zhang Z. The retrieval of intra-day trend and its influence on traffic prediction. Transportation Research Part C:Emerging Technologies, 2012,22(5):103-118.
    [99] Tan H, Feng G, Feng J, Wang W, Zhang YJ, Li F. A tensor-based method for missing traffic data completion. Transportation Research Part C:Emerging Technologies, 2013,28:15-27.
    [100] Chang EP, Wang SH. Improved Freeway Incident Detection using Fuzzy Set Theory. 1994. 75-82.
    [101] Stephanedes YJ, Liu X. Artificial neural networks for freeway incident detection. In:Proc. of the Transportation Research Record. 1995.
    [102] Athanasios V, Nikolaos D, Anastasios D, Eftychios P. Deep learning for computer vision:A brief review. Computational Intelligence and Neuroscience, 2018,2018:1-13.
    [103] Yu D, Deng L. Automatic Speech Recognition:A Deep Learning Approach. Springer-Verlag, 2014.
    [104] Xue-Feng Xi, Guo-Dong Z. A survey on deep learning for natural language processing. Acta Automatica Sinica, 2016(in Chinese with English abstract).
    [105] Marlin BM, Swersky K, Bo C, Freitas ND. Inductive principles for restricted Boltzmann machine learning. Journal of Machine Learning Research-Proc. Track for Artificial Intelligence and Statistics, 2010,9(9):509-516.
    [106] Shi X, Chen Z, Wang H, Yeung DY, Wong WK, Woo WC. Convolutional LSTM network:A machine learning approach for precipitation nowcasting. In:Proc. of the Int'l Conf. on Neural Information Processing Systems. 2015.
    [107] Yuan Z, Zhou X, Yang T. Hetero-ConvLSTM:A deep learning approach to traffic accident prediction on heterogeneous spatio-temporal data. In:Proc. of the 24th ACM SIGKDD Int'l Conf. on Knowledge Discovery and Data Mining. 2018. 984-992.[doi:10.1145/3219819.3219922]
    附中文参考文献:
    [78] 王飞跃,段艳杰,吕宜生,等.一种基于lstm的路段行程时间预测方法.专利 CN106096767A,2016.
    相似文献
    引证文献
引用本文

柏梦婷,林杨欣,马萌,王平.行程时间预测方法研究.软件学报,2020,31(12):3753-3771

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2018-11-03
  • 最后修改日期:2019-05-08
  • 在线发布日期: 2020-12-03
  • 出版日期: 2020-12-06
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号