代价敏感学习方法综述
作者:
作者简介:

万建武(1986-),男,江苏常州人,博士,讲师,CCF专业会员,主要研究领域为数据挖掘,机器学习,模式识别;杨明(1964-),男,博士,教授,博士生导师,CCF专业会员,主要研究领域为数据挖掘,机器学习,模式识别.

通讯作者:

杨明,E-mail:myang@njnu.edu.cn

中图分类号:

TP18

基金项目:

国家自然科学基金(61502058,61876087)


Survey on Cost-sensitive Learning Method
Author:
Fund Project:

National Natural Science Foundation of China (61502058, 61876087)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [115]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    分类是机器学习的重要任务之一.传统的分类学习算法追求最低的分类错误率,假设不同类型的错误分类具有相等的损失.然而,在诸如人脸识别门禁系统、软件缺陷预测、多标记学习等应用领域中,不同类型的错误分类所导致的损失差异较大.这要求学习算法对可能导致高错分损失的样本加以重点关注,使得学习模型的整体错分损失最小.为解决该问题,代价敏感学习方法引起了研究者的极大关注.以代价敏感学习方法的理论基础作为切入点,系统阐述了代价敏感学习的主要模型方法以及代表性的应用领域.最后,讨论并展望了未来可能的研究趋势.

    Abstract:

    Classification is one of the most important tasks in machine learning. Conventional classification methods aim to attain low recognition error rate and assume the same loss from different kinds of misclassifications. However, in the applications such as the doorlocker system based on face recognition, software defect prediction and multi-label learning, different kinds of misclassification will lead to different losses. This requires the learning methods to pay more attention to the samples with high-cost misclassification, and thus make the total misclassification losses minimized. To deal with this issue, cost-sensitive learning has received the considerable attention from the researchers. This study takes the theoretical foundation of cost-sensitive learning as the focal point to analyze and survey its main models and the typical applications. At last, the difficulty and probable development trend of cost-sensitive learning are discussed.

    参考文献
    [1] Elkan C. The foundations of cost-sensitive learning. In:Nebel B, ed. Proc. of the 17th Int'l Joint Conf. on Artificial Intelligence. Washington:Morgan Kaufmann Publishers, 2001. 973-978.
    [2] Ling XF, Sheng VS. A comparative study of cost-sensitive classifiers. Chinese Journal of Computers, 2007,30(8):1203-1212.[doi:10.3321/j.issn:0254-4164.2007.08.001]
    [3] Zhang Y, Zhou ZH. Cost-sensitive face recognition. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2010,32(10):1758-1769.[doi:10.1109/TPAMI.2009.195]
    [4] Lessmann S, Baesens B, Mues C, Pietsch S. Benchmarking classification models for software defect prediction:A proposed framework and novel findings. IEEE Trans. on Software Engineering, 2008,34(4):485-496.[doi:10.1109/TSE.2008.35]
    [5] Turney PD. Types of cost in inductive concept learning. In:Langley P, ed. Proc. of the Workshop on Cost-sensitive Learning at the 17th Int'l Conf. on Machine Learning. Standford:Morgan Kaufmann Publishers, 2000. 15-21.
    [6] Zhang SC. Cost-sensitive classification with respect to waiting cost. Knowledge Based Systems, 2010,23(5):369-378.[doi:10.1016/j.knosys.2010.01.008]
    [7] Sheng VS. Fast data acquisition in cost-sensitive learning. In:Zaki MJ, Siebes A, Yu JX, Goethals B, Webb GI, Wu XD, eds. Proc. of the Int'l Conf. on Data Mining. Brussels:IEEE, 2012. 66-77.[doi:10.1007/978-3-642-23184-1_6]
    [8] Sheng VS, Ling CX. Feature value acquisition in testing:A sequential batch test algorithm. In:Cohen WW, Moore A, eds. Proc. of the 23th Int'l Conf. on Machine Learning. Pittsburgh:ACM Press, 2006. 809-816.[doi:10.1145/1143844.1143946]
    [9] Yang Q, Ling CX, Chai X, Pan R. Test-cost sensitive classification on data with missing values. IEEE Trans. on Knowledge and Data Engineering, 2006,18(5):626-638.[doi:10.1109/TKDE.2006.84]
    [10] Ling CX, Yang Q, Wang J, Zhang SC. Decision trees with minimal costs. In:Brodley C, ed. Proc. of the Int'l Conf. on Machine Learning. Alberta:ACM Press, 2004. 69-76.[doi:10.1145/1015330.1015369]
    [11] Chai X, Deng L, Yang Q, Ling CX. Test-cost sensitive Naïve Bayes classification. In:Bramer M, ed. Proc. of the Int'l Conf. on Data Mining. Brighton:IEEE, 2004. 51-58.[doi:10.1109/ICDM.2004.10092]
    [12] Turney PD. Low size-complexity inductive logic programming:The east-west challenge considered as a problem in cost-sensitive classification. In:Muggleton S, Mizoguchi F, Furukawa K, eds. Proc. of the 5th Int'l Inductive Logic Programming Workshop. Tokyo:Springer-Verlag, 1995. 247-263.
    [13] Zhou ZH. Machine Learning. Beijing:Tsinghua University Press, 2016. 2-46(in Chinese).
    [14] Margineantu D. On class probability estimates and cost-sensitive evaluation of classifiers. In:Langley P, ed. Proc. of the Workshop on Cost-Sensitive Learning at the 17th Int'l Conf. on Machine Learning. Standford:Morgan Kaufmann Publishers, 2000. 15-21.
    [15] Zadrozny B, Elkan C. Learning and making decisions when costs and probabilities are both unknown. In:Lee D, Schkolnick M, Provost FJ, Srikant R, eds. Proc. of the 7th ACM SIGKDD Int'l Conf. on Knowledge Discovery and Data Ming. San Francisco:ACM Press, 2001. 204-213.[doi:10.1145/502512.502540]
    [16] Zadrozny B, Langford J, Abe N. A simple method for cost-sensitive learning. Technical Report, IBM, 2002.
    [17] Bahnsen AC, Aouada D, Ottersten B. Example-dependent cost-sensitive decision trees. Expert Systems with Applications, 2015, 42(19):6609-6619.[doi:10.1016/j.eswa.2015.04.042]
    [18] Hastie T, Tibshirani P, Friedman J. The Elements of Statistical Learning. 2nd ed., New York:Springer-Verlag, 2001.
    [19] Wan JW. Cost-sensitive dimensionality reduction and its application in face recognition[Ph.D. Thesis]. Nanjing:Nanjing Normal University, 2013(in Chinese with English abstract).
    [20] Zhang ML, Zhou ZH. A review on multi-label learning algorithms. IEEE Trans. on Knowledge and Data Engineering, 2014,26(8):1819-1837.[doi:10.1109/TKDE.2013.39]
    [21] Lo HY, Wang JC, Lin SD. Cost-sensitive multi-label learning for audio tag annotation and retrieval. IEEE Trans. on Multimedia, 2011,13(3):518-529.[doi:10.1109/tmm.2011.2129498]
    [22] Lo HY, Lin SD, Wang HM. Generalized k-Labelsets ensemble for multi-label and cost-sensitive classification. IEEE Trans. on Knowledge and Data Engineering, 2014,26(7):1679-1691.[doi:10.1109/tkde.2013.112]
    [23] Fu ZL. Cost-sensitive ensemble learning algorithm for multi-label classification problems. Acta Automatica Sinica, 2014,40(6):1075-1085(in Chinese with English abstract).[doi:10.3724/SP.J.1004.2014.01075]
    [24] Han L, Li M. Open source software classification using cost-sensitive multi-label learning. Ruan Jian Xue Bao/Journal of Software, 2014,25(9):1982-1991(in Chinese with English abstract). http://www.jos.org.cn/1000-9825/4639.htm[doi:10.13328/j.cnki.jos. 004639]
    [25] Yuan J, Ming L, Zhou ZH. Software defect detection with ROCUS. Journal of Computer Science and Technology, 2011,26(2):328-342.[doi:10.1007/s11390-011-9439-0]
    [26] McCabe TJ. A complexity measure. IEEE Trans. on Software Engineering, 1976,2(4):308-320.[doi:10.1109/TSE.1976.233837]
    [27] Halstead MH. Elements of Software Science. New York:Elsevier, 1977.
    [28] Chidamber SR, Kemerer CF. A metrics suite for object oriented design. IEEE Trans. on Software Engineering, 1994,20(6):476-493.[doi:10.1109/32.295895]
    [29] Xing F, Guo P, Lyu R. A novel method for early software quality prediction based on support vector machine. In:Binder RV, Tsai JJP, eds. Proc. of the Int'l Symp. on Software Reliability Engineering. Chicago:IEEE, 2005. 213-222.[doi:10.1109/ISSRE. 2005.6]
    [30] Miao LS, Liu MX, Zhang DQ. Cost-sensitive feature selection with application in software defect prediction. In:Eklundh JO, Ohta YC, Tanimoto S, eds. Proc. of the Int'l Conf. on Pattern Recognition. Tsukuba:IEEE, 2012. 976-970.
    [31] Liu MX, Miao LS, Zhang DQ. Two-stage cost-sensitive learning for software defect prediction. IEEE Trans. on Reliability, 2014, 63(2):676-686.[doi:10.1109/tr.2014.2316951]
    [32] Zheng J. Cost-sensitive boosting neural networks for software defect prediction. Expert Systems with Applications, 2010,37(6):4537-4534.[doi:10.1016/j.eswa.2009.12.056]
    [33] Arar OF, Ayan K. Software defect prediction using cost-sensitive neural network. Applied Soft Computing, 2015,33(C):263-277.[doi:10.1016/j.asoc.2015.04.045]
    [34] Sheng VS, Ling CX. Thresholding for making classifiers cost-sensitive. In:Yolanda G, Raymond JM, eds. Proc. of the 21st AAAI Conf. on Artificial Intelligence. Boston:AAAI Press, 2006. 476-481.
    [35] Zadrozny B, Langford J, Abe N. Cost-sensitive learning by cost-proportionate example weighting. In:Shavlik J, ed. Proc. of the Int'l Conf. on Data Mining. Melbourne:IEEE, 2003. 435-442.[doi:10.1109/ICDM.2003.1250950]
    [36] Seiffert C, Khoshgoftaar TM, Hulse JV, Napolotano A. A comparative study of data sampling and cost sensitive learning. In:Proc. of the Int'l Conf. on Data Mining. Pisa:IEEE, 2008. 46-52.[doi:10.1109/ICDMW.2008.119]
    [37] Drummond C, Holte RC. C4.5, class imbalance, and cost sensitivity:Why under-sampling beats oversampling. In:Fawcett T, Mishra N, eds. Proc. of the Workshop on Imbalanced Data Sets at the ICML 2003. Washington:AAAI Press, 2003. 1-8.
    [38] Zhou ZH, Liu XY. On multi-class cost-sensitive learning. Computational Intelligence, 2010,26(3):232-257.[doi:10.1111/j.1467-8640.2010.00358.x]
    [39] Zhou ZH, Liu XY. On multi-class cost-sensitive learning. In:Yolanda G, Raymond JM, eds. Proc. of the 21th AAAI Conf. on Artificial Intelligence. Boston:AAAI Press, 2006. 567-572.
    [40] Duda RO, Hart PE, Stork DG. Pattern Classification. 2nd ed., New York:Wiley, 2001.[doi:10.1007/978-1-4471-0409-4_3]
    [41] Ting KM. An instance-weighting method to induce cost-sensitive trees. IEEE Trans. on Knowledge and Data Engineering, 2002, 14(3):659-665.[doi:10.1109/TKDE.2002.1000348]
    [42] Liu XY, Zhou ZH. The influence of class imbalance on cost-sensitive learning:An empirical study. In:Liu JM, Wah BW, eds. Proc. of the 6th Int'l Conf. on Data Mining. Hong Kong:IEEE, 2006. 970-974.[doi:10.1109/ICDM.2006.158]
    [43] Chawla NV, Bowyer KW, Hall LO, Kegelmeyer WP. SMOTE:Synthetic minority over-sampling technique. Journal of Artificial Intelligent Research, 2002,16:321-357.[doi:10.1613/jair.953]
    [44] Wilson DL. Asymptotic properties of nearest neighbor rules using edited data. IEEE Trans. on Systems, Man and Cybernetics, 1972, 2:408-421.[doi:10.1109/tsmc.1972.4309137]
    [45] Lopez V, Fernandez A, Moreno-Torres JG, Herrera F. Analysis of preprocessing vs. cost-sensitive learning for imbalanced classification. Open problems on intrinsic data characteristics. Expert Systems with Applications, 2012,39(7):6585-6608.[doi:10.1016/j.eswa.2011.12.043]
    [46] Domingos P. MetaCost:A general method for making classifiers cost-sensitive. In:Fayyad UM, Chaudhuri S, Madigan D, eds. Proc. of the Int'l Conf. on Knowledge Discovery and Data Mining. San Diego:ACM Press, 1999. 155-164.[doi:10.1145/312129. 312220]
    [47] Zhou ZH, Liu XY. Training cost-sensitive neural networks with methods addressing the class imbalance problem. IEEE Trans. on Knowledge and Data Engineering, 2006,18(1):63-77.[doi:10.1109/tkde.2006.17]
    [48] Lomax S, Vadera S. A survey of cost-sensitive decision tree induction algorithms. ACM Computing Surveys, 2013,45(2):1-35.[doi:10.1145/2431211.2431215]
    [49] Vadera S. CSNL:A cost-sensitive non-linear decision tree algorithm. ACM Trans. on Knowledge Discovery from Data. 2010,4(2):1-35.[doi:10.1145/1754428.1754429]
    [50] Freitas A, Costa-Pereira A, Brazdil P. Cost-sensitive decision trees applied to medical data. In:Song Y, Eder J, Nguyen TM, eds. Proc. of the Int'l Conf. on Data Warehousing and Knowledge Discovery. Regensburg:Springer-Verlag, 2007. 303-312.[doi:10.1007/978-3-540-74553-2_28]
    [51] Davis JV, Jungwoo H, Rossbach CJ. Cost-sensitive decision tree learning for forensic classification. In:Furnkranz J, Scheffer T, Spilioppulou M, ed. Proc. of the European Conf. on Machine Learning. Berlin:Springer-Verlag, 2006. 622-629.[doi:10.1007/11871842_60]
    [52] Turney PD. Cost-sensitive classification:Empirical evaluation of a hybrid genetic decision tree induction. Journal of Artificial Intelligence Research, 1995,2:369-409.[doi:10.1111/j.1365-2958.2009.06876.x]
    [53] Ling CX, Sheng VS, Yang Q. Test strategies for cost-sensitive decision tress. IEEE Trans. on Knowledge and Data Engineering, 2006,18(8):1055-1067.[doi:10.1109/TKDE.2006.131]
    [54] Zhao SW, Zuo L, Wang SL, Shen LS. A multi-objective optimization based constructing cost-sensitive decision trees method. Acta Electronica Sinica, 2011,39(10):2348-2396(in Chinese with English abstract).
    [55] Zhang SC, Zhu XF, Zhang JL, Zhang CQ. Cost-time sensitive decision tree with missing values. In:Zhang ZL, Siekmann JH, eds. Proc. of the Int'l Conf. on Knowledge Science, Engineering and Management. Melbourne:Springer-Verlag, 2009. 294-297.[doi:10.1007/978-3-540-76719-0_44]
    [56] Wang T, Qin ZX, Jin Z, Zhang SC. Handling over-fitting in test cost-sensitive decision tree learning by feature selection, smoothing and pruning. The Journal of Systems and Software, 2010,83:1137-1147.[doi:10.1016/j.jss.2010.01.002]
    [57] Morik K, Brochhausen P, Joachims T. Combining statistical learning with a knowledge-based approach:A case study in intensive care monitoring. In:Bratko I, Dzeroski S, eds. Proc. of the 16th Int'l Conf. on Machine Learning. Bled:Morgan Kaufmann Publishers, 1999. 268-277.[doi:10.17877/DE290R-3088]
    [58] Masnadi-Shirazi H, Vasconcelos N, Iranmehr A. Cost-sensitive support vector machines. Neurocmputing, 2019.[doi:10.1016/j. neucom.2018.11.099]
    [59] Lee Y, Lin Y, Wahba G. Multicategory support vector machines:Theory and application to the classification of microarray data and satellite radiance data. Journal of American Statistical Association, 2004,99(465):67-81.[doi:10.2307/27590354]
    [60] Gu B, Sheng VS, Tay K, Romano W, Li S. Cross validation through two-dimensional solution surface for cost-sensitive SVM. IEEE Trans. on Pattern Analysis Machine Intelligence, 2017,39(6):1103-1121.[doi:10.1109/TPAMI.2016.2578326]
    [61] Sun YM, Kamel MS, Wong AK, Wang Y. Cost-sensitive boosting for classification of imbalanced data. Pattern Recognition, 2007, 40(12):3358-3378.[doi:10.1016/j.patcog.2007.04.009]
    [62] Zhang C, Tan C, Li HZ, Hong GS. A cost-sensitive deep belief network for imbalanced classification. IEEE Trans. on Neural Networks and Learning System, 2018,30(1):109-122.[doi:10.1109/TNNLS.2018.2832648]
    [63] Zhang GQ, Sun HJ, Ji ZX, Yuan YH, Sun QS. Cost-sensitive dictionary learning for face recognition. Pattern Recognition, 2016,60:613-629.[doi:110.1016/j.patcog.2016.06.012]
    [64] Man JY, Jing XY, Zhang D, Lan C. Sparse cost-sensitive classifier with application to face recognition. In:Macq B, Schelkens P, eds. Proc. of the Int'l Conf. on Image Processing. Brussels:IEEE, 2011. 1773-1776.[doi:10.1109/ICIP.2011.6115804]
    [65] Wan JW, Yang M, Wang HY. Cost sensitive matrix factorization for face recognition. In:Yin HJ, Gao Y, Chen SC, Wen YM, Cai GY, Gu TL, Du JP, Tallon-Ballesteros AJ, Zhang ML, eds. Proc. of the Int'l Conf. on Intelligent Data Engineering and Automated Learning. Guilin:Springer-Verlag, 2017. 136-145.[doi:10.1007/978-3-319-68935-7_16]
    [66] Zheng J. Cost-sensitive boosting neural networks for software defect prediction. Expert Systems with Applications, 2010,37(6):4537-4543.[doi:10.1016/j.eswa.2009.12.056]
    [67] Ryu D, Jang J, Baik J. A transfer cost-sensitive boosting approach for cross-project defect prediction. Software Quality Journal, 2017,25(1):1-38.[doi:10.1007/s11219-015-9287-1]
    [68] Li ZQ, Jing XY, Wu F, Zhu XK, Xu BW, Ying S. Cost-sensitive transfer kernel canonical correlation analysis for heterogeneous defect prediction. Automated Software Engineering, 2018,25(2):201-245.[doi:10.1007/s10515-017-0220-7]
    [69] Herbold S. Benchmarking cross-project defect prediction approaches with costs metrics. ArXIV:1801.04107V.
    [70] Li ZQ, Jing XY, Zhu XK. Heterogeneous fault prediction with cost-sensitive domain adaptation. Software Testing, Verfication and Reliablitity, 2018,28(2):1-22.[doi:10.1002/stvr.1658]
    [71] Wu F, Jing XY, Sun Y, Sun J, Huang L, Cui FY, Sun YF. Cross-project and within-project semisupervised software defect prediction:A unified approach. IEEE Trans. on Reliability, 2018,67(2):581-597.[doi:10.1109/TR.2018.2804922]
    [72] Sahin Y, Bulkan S, Duman E. A cost-sensitive decision tree approach for fraud detection. Expert System with Application, 2013, 40(15):5916-5923.[doi:10.1016/j.eswa.2013.05.021]
    [73] Zhou B, Yao YY, Luo JG. Cost-sensitive three-way email spam filtering. Journal of Intelligence Information System, 2014,42(1):19-45.[doi:10.1007/s10844-013-0254-7]
    [74] Artan Y, Haider MA, Langer DL, Kwast TH, Evans AJ, Yang Y, Wernick MN. Prostate cancer localization with multispectral MRI using cost-sensitive support vector machines and conditional random fields. IEEE Trans. on Image Processing, 2010,19(9):2444-2455.[doi:10.1109/TIP.2010.2048612]
    [75] Hinton G, Osindero S, Teh YW. A fast learning algorithm for deep belief nets. Neural Computing, 2006,18(7):1527-1554.[doi:10.1162/neco.2006.18.7.1527]
    [76] Wright J, Yang A, Sastry S, Ma Y. Robust face recognition via sparse representation. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2009,31(2):210-227.[doi:10.1109/TPAMI.2008.79]
    [77] Hu WM, Ding XM, Li B, Wang JC, Gao Y, Wang FS. Multi-perspective cost-sensitive context-aware multi-instance sparse coding and its application to sensitive video recognition. IEEE Trans. on Multimedia, 2015,18(1):76-89.[doi:10.1109/TMM.2015. 2496372]
    [78] Huang KH, Lin HT. Cost-sensitive label embedding for multi-label classification. Machine Learning, 2017,106(9-10):1725-1746.[doi:10.1007/s10994-017-5659-z]
    [79] Yang YY, Huang KH, Chang CW, Lin HT. Cost-sensitive reference pair encoding for multi-label learning. In:Phung DQ, Tseng VS, Webb GI, Ho B, Ganji M, Rashidi L, eds. Proc. of the Pacific-Asia Conf. on Knowledge Discovery & Data Mining. Melbourne:Springer-Verlag, 2018. 143-145.[doi:10.1007/978-3-319-93034-3_12]
    [80] Hsieh CY, Lin YA, Lin HT. A deep model with local surrogate loss for general cost-sensitive multi-label learning. In:Mcllraith SA, Weinberger KQ, eds. Proc. of the AAAI Conf. on Artificial Intelligence. New Orleans:AAAI Press, 2018. 3239-3246.
    [81] Lu JW, Tan YP. Cost-sensitive subspace learning for face recognition. In:Darrell T, Hogg D, Jacobs D, eds. Proc. of the Int'l Conf. on Computer Vision and Pattern Recognition. San Francisco:IEEE, 2010. 2661-2666.[doi:10.1109/CVPR.2010.5539983]
    [82] Lu JW, Tan YP. Cost-sensitive subspace learning for human age estimation. In:Siu WC, ed. Proc. of the 17th Int'l Conf. on Image Processing. Hong Kong:IEEE, 2010. 1593-1596.[doi:10.1109/ICIP.2010.5650873]
    [83] Wan JW, Yang M, Ji GL, Chen YJ. Weighted cost sensitive locality preserving projection for face recognition. Ruan Jian Xue Bao/Journal of Software, 2013,24(5):1155-1164(in Chinese with English abstract). http://www.jos.org.cn/1000-9825/4263.htm[doi:10.3724/sp.j.1001.2013.04263]
    [84] Wan JW, Yang M. Pairwise costs in subclass discriminant analysis. Ruan Jian Xue Bao/Journal of Software, 2013,24(11):2597-2609(in Chinese with English abstract). http://www.jos.org.cn/1000-9825/4473.htm[doi:10.3724/SP.J.1001.2013.04473]
    [85] Wan JW, Yang M, Chen YJ. Discriminative cost sensitive Laplacian score for face recognition. Neurocomputing, 2015,152:333-344.[doi:10.1016/j.neucom.2014.10.059]
    [86] Li YF, Kwok J, Zhou ZH. Cost-sensitive semi-supervised support vector machine. In:Fox M, Poole D, eds. Proc. of the 24th AAAI Conf. on Artificial Intelligence. Atlanta:AAAI Press, 2010. 500-505.
    [87] Wu JS, Zhou ZH. Sequence-based prediction of microRNA-binding residues in proteins using cost-sensitive laplacian support vector machines. ACM/IEEE Trans. on Computational Biology and Bioinformatics, 2013,10(3):752-759.[doi:10.1109/tcbb.2013. 75]
    [88] Wan JW, Yang M, Ji GL, Chen YJ. Cost sensitive semi-supervised laplacian support vector machine. Acta Electronica Sinica, 2012,40(7):1410-1415(in Chinese with English abstract).[doi:10.3969/j.issn.0372-2112.2012.07.020]
    [89] Wan JW, Wang Y. Cost-sensitive label propagation for semi-supervised face recognition. IEEE Trans. on Information Forensics and Security, 2019,14(7):1729-1743.[doi:10.1109/TIFS.2018.2885252]
    [90] Lu JW, Zhou XZ, Tan YP. Cost-sensitive semi-supervised discriminant analysis for face recognition. IEEE Trans. on Information Forensics and Security, 2012,7(3):944-953.[doi:10.1109/tifs.2012.2188389]
    [91] Wan JW, Yang M, Gao Y, Chen YJ. Pairwise costs in semi-supervised linear discriminant analysis for face recognition. IEEE Trans. on Information Forensics and Security, 2014,9(10):1569-1580.[doi:10.1109/tifs.2014.2343833]
    [92] Wan JW, Wang HY, Yang M. Cost sensitive semi-supervised canonical correlation analysis for multi-view dimensionality reduction. Neural Processing Letters, 2017,45(2):411-430.[doi:10.1007/s11063-016-9532-z]
    [93] Huang SJ, Zhao JW, Liu ZY. Cost-effective training of deep CNNs with active model adaptation. In:Guo YK, Farooq F, eds. Proc. of the 24th ACM SIGKDD Conf. on Knowledge Discovery and Data Mining. London:ACM Press, 2018. 1580-1588.[doi:10. 1145/3219819.3220026]
    [94] Yan YF, Huang SJ. Cost-effective active learning for hierarchical multi-label classification. In:Lang J, ed. Proc. of the Int'l Joint Conf. on Artificial Intelligence. Stockholm:Morgan Kaufmann Publishers, 2018. 2962-2968.[doi:10.24963/ijcai.2018/411]
    [95] Huang SJ, Chen JL, Mu X, Zhou ZH. Cost-effective active learning from diverse labelers. In:Sierra C, ed. Proc. of the Int'l Joint Conf. on Artificial Intelligence. Melbourne:Morgan Kaufmann Publishers, 2017. 1879-1885.[doi:10.24963/ijcai.2017/261]
    [96] Wang HS, Cui ZC, Chen YX, Avidan M, Abdallah AB, Kronzer A. Predicting hospital readmission via cost-sensitive deep learning. IEEE/ACM Trans. on Computational Biology and Bioinformatics, 2018,15(6):1986-1978.[doi:10.1109/TCBB.2018.2827029]
    [97] Zhang GQ, Sun HJ, Xia GY, Sun QS. Multiple kernel sparse representation-based orthogonal discriminative projection and its cost-sensitive extension. IEEE Trans. on Image Processing, 2016,25(9):4271-4285.[doi:10.1109/TIP.2016.2587119]
    [98] Tsoumakas G, Katakis I, Vlahavas I. Random k-labelsets for multilabel classification. IEEE Trans. on Knowledge and Data Engineering, 2011,23:1079-1089.[doi:10.1109/TKDE.2010.164]
    [99] Tsoumakas G, Katakis I, Vlahavas I. Mining multi-label data. In:Maimon O, Rokach L, eds. Data Mining and Knowledge Discovery Handbook. Boston:Springer-Verlag, 2010.[doi:10.1007/978-0-387-09823-4_34]
    [100] He XF, Niyogi P. Locality preserving projections. In:Thrun S, Saul LK, Scholkopf B, eds. Proc. of the Neural Information Processing Systems. British Columbia:MIT Press, 2003. 153-160.[doi:10.1016/j.patcog.2011.05.014]
    [101] Zhu M, Martinez AM. Subclass discriminant analysis. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2006,28(8):1274-1286.[doi:10.1109/TPAMI.2006.172]
    [102] Shi QF, Eriksson A, Shen CH. Is face recognition really a compressive sensing problem? In:Proc. of the Int'l Conf. on Computer Vision and Pattern Recognition. Colorado Springs:IEEE, 2011. 553-560.[doi:10.1109/CVPR.2011.5995556]
    [103] Loog M, Duin RP, Umbach RH. Multiclass linear dimension reduction by weighted pairwise fisher criteria. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2001,23(7):762-766.[doi:10.1109/34.935849]
    [104] Zhou YH, Zhou ZH. Large margin distribution learning with cost interval and unlabeled data. IEEE Trans. on Knowledge and Data Engineering, 2016,28(7):1749-1763.[doi:10.1109/TKDE.2016.2535283]
    [105] Liu XY, Zhou ZH. Learning with cost intervals. In:Rao B, Krishnapuram B, Tomkins A, Yang Q, eds. Proc. of the 16th ACM SIGKDD Conf. on Knowledge Discovery and Data Mining. Washington:ACM Press, 2010. 403-412.[doi:10.1145/1835804. 1835857]
    [106] Wang Y, Wan JW, Guo J, Cheung YM, Yuen PC. Inference-based similarity search in randomized montgomery domains for privacy-preserving biometric identification. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2018,40(7):1611-1624.[doi:10.1109/tpami.2017.2727048]
    附中文参考文献:
    [13] 周志华.机器学习.北京:清华大学出版社,2016.2-46.
    [19] 万建武.代价敏感降维及其人脸识别应用研究[博士学位论文].南京:南京师范大学,2013.
    [23] 付忠良.多标签代价敏感分类集成学习算法.自动化学报,2014,40(6):1075-1085.[doi:10.3724/SP.J.1004.2014.01075]
    [24] 韩乐,黎铭.基于代价敏感多标签学习的开源软件分类.软件学报,2014,25(9):1982-1991. http://www.jos.org.cn/1000-9825/4639.htm[doi:10.13328/j.cnki.jos.004639]
    [54] 赵士伟,卓力,王素玉,沈兰荪.一种基于NNIA多目标优化的代价敏感决策树构建方法.电子学报,2011,39(10):2348-2396.
    [83] 万建武,杨明,吉根林,陈银娟.一种面向人脸识别的加权代价敏感局部保持投影.软件学报,2013,24(5):1155-1164. http://www.jos.org.cn/1000-9825/4263.htm[doi:10.3724/sp.j.1001.2013.04263]
    [84] 万建武,杨明.一种引入成对代价的子类判别分析.软件学报,2013,24(11):2597-2609. http://www.jos.org.cn/1000-9825/4473.htm[doi:10.3724/SP.J.1001.2013.04473]
    [88] 万建武,杨明,吉根林,陈银娟.代价敏感的半监督Laplacian支持向量机.电子学报,2012,40(7):1410-1415.[doi:10.3969/j.issn. 0372-2112.2012.07.020]
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

万建武,杨明.代价敏感学习方法综述.软件学报,2020,31(1):113-136

复制
分享
文章指标
  • 点击次数:4634
  • 下载次数: 11238
  • HTML阅读次数: 6515
  • 引用次数: 0
历史
  • 收稿日期:2018-11-24
  • 最后修改日期:2019-04-19
  • 在线发布日期: 2019-08-12
  • 出版日期: 2020-01-06
文章二维码
您是第19894282位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号