人类面部属性估计研究:综述
作者:
作者简介:

曹猛(1994-),男,江苏扬州人,学士,主要研究领域为机器学习,模式识别;马廷淮(1974-),男,博士,教授,博士生导师,CCF专业会员,主要研究领域为数据挖掘,数据共享与存储,社会网络,隐私保护;田青(1983-),男,博士,副教授,主要研究领域为机器学习,模式识别,机器视觉;陈松灿(1962-),男,博士,教授,博士生导师,CCF高级会员,主要研究领域为机器学习,模式识别.

通讯作者:

田青,E-mail:tianqing@nuist.edu.cn

中图分类号:

TP391

基金项目:

国家自然科学基金(61702273,61472186,61672281);江苏省自然科学基金(BK20170956);江苏省高校自然科学研究面上项目(17KJB520022)


Human Facial Attributes Estimation: A Survey
Author:
Fund Project:

National Natural Science Foundation of China (61702273, 61472186, 61672281); National Natural Science Foundation of Jiangsu Province, China (BK20170956); Natural Science Foundation of the Jiangsu Higher Education Institutions of China (17KJB520022)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [97]
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    近年来,人脸属性估计因其广泛的应用而得到了大量的关注和研究,并且很多估计方法被提了出来.主要对现有相关工作进行归纳总结,为研究者提供相关参考.首先,根据是否考虑人脸性别、年龄、人种等不同属性间的内在关联,将现有的人脸面部属性研究方法划分成朴素的研究方法和自然的研究方法这两大类进行总结介绍.然后,从单一人脸数据库标记不完备、现有方法未能完备利用多属性联合估计、现有方法未能很好地利用各面部属性间关系这3个方面阐述当前方法的不足.最后,给出关于人脸面部属性估计进一步的研究方向.

    Abstract:

    Over the past decades, human facial attributes (e.g. gender, age, and race) estimation has received large amount of attention and research due to its potential applications, and variety of methods have been proposed to address it. This article is devoted to review related works comprehensively and give references for researchers. Firstly, in accordance with whether exploiting the potential correlations between these facial attributes, the existing approaches are classified into naïve and natural groups and they are reviewed within each group. Then, in terms of incompleteness of annotated labels, considered attributes, and correlations utilization, the drawbacks of existing methods are analyzed. Finally, future research directions are provided at the end of this work.

    参考文献
    [1] Lu L. A study of gender classification and age estimation based on face image[Ph.D. Thesis]. Shanghai:Shanghai Jiaotong University, 2010(in Chinese with English abstract).
    [2] Linoff GS, Berry MJ. Data Mining Techniques:For Marketing, Sales, and Customer Relationship Management. 3rd ed., New York:John Wiley & Sons, 2011.
    [3] Romano NC, Fjermestad J. Electronic Customer Relationship Management. New York:M.E. Sharpe, 2006.
    [4] Ramanathan N, Chellappa R. Face verification across age progression. IEEE Trans. on Image Processing, 2006,15:3349-3361.[doi:10.1109/TIP.2006.881993]
    [5] Lanitis A, Draganova C, Christodoulou C. Comparing different classifiers for automatic age estimation. IEEE Trans. on Systems Man & Cybernetics Part B:Cybernetics, 2004,34(1):621-628.[doi:10.1109/TSMCB.2003.817091]
    [6] Guo G, Fu Y, Dyer CR, et al. Image-based human age estimation by manifold learning and locally adjusted robust regression. IEEE Trans. on Image Processing, 2008:17:1178-1188.[doi:10.1109/TIP.2008.924280]
    [7] Wu Y, Wei Z, Deng RH. Attribute-based access to scalable media in cloud-assisted content sharing networks. IEEE Trans. on Multimedia, 2013,15:249-253.[doi:10.1109/TMM.2013.2238910]
    [8] Wu B, Ai H, Huang C. LUT-based adaboost for gender classification. In:Kittler J, Nixon MS, eds. Proc. of the Audio-and Video-Based Biometric Person Authentication. Lecture Notes in Computer Science, Guildford, 2003. 104-110.[doi:10.1007/3-540-44887-X_13]
    [9] Wu B, Ai H, Huang C. Facial image retrieval based on demographic classification. In:Proc. of the 17th IEEE Int'l Conf. on Pattern Recognition. 2004. 914-917.[doi:10.1109/ICPR.2004.1334677]
    [10] Wang S, Gao Z, He S, et al. Gender recognition from visible and thermal infrared facial images. Multimedia Tools and Applications, 2016,75(14):8419-8442.[doi:10.1007/s11042-015-2756-5]
    [11] Aghajanian J, Warrell J, Prince SJD, et al. Patch-based within-object classification. In:Proc. of the 12th IEEE Int'l Conf. on Computer Vision. 2009. 1125-1132.[doi:10.1109/ICCV.2009.5459352]
    [12] Dantcheva A, Bremond F. Gender estimation based on smile-dynamics. IEEE Trans. on Information Forensics and Security, 2016, 12:719-729.[doi:10.1109/TIFS.2016.2632070]
    [13] Patel B, Maheshwari RP, Raman B. Compass local binary patterns for gender recognition of facial photographs and sketches. Neurocomputing, 2016,218:203-215.[doi:10.1016/j.neucom.2016.08.055]
    [14] Zhang W, Smith M, Smith L, et al. Gender and gaze gesture recognition for human-computer interaction. Computer Vision & Image Understanding, 2016,149:32-50.[doi:10.1016/j.cviu.2016.03.014]
    [15] Castrillón-Santana M, Lorenzo-Navarro J, Ramón-Balmaseda E. Descriptors and regions of interest fusion for in-and cross-database gender classification in the wild. Image and Vision Computing, 2017,57:15-24.[doi:10.1016/j.imavis.2016.10.004]
    [16] Castrillón-Santana M, Lorenzo-Navarro J, Ramón-Balmaseda E. Multi-scale score level fusion of local descriptors for gender classification in the wild. Multimedia Tools & Applications, 2016,76:1-17.[doi:10.1007/s11042-016-3653-2]
    [17] Castrillón-Santana M, Lorenzo-Navarro J, Ramón-Balmaseda E. On using periocular biometric for gender classification in the wild. Pattern Recognition Letters, 2015,82:181-189.[doi:10.1016/j.patrec.2015.09.014]
    [18] Lin G, Chang M, Chang Y, et al. A gender classification scheme based on multi-region feature extraction and information fusion for unconstrained images. Multimedia Tools and Applications, 2016,16:1-21.[doi:10.1007/s11042-015-2797-9]
    [19] Liao G, Chen W, Wu Y. Facial features for gender recognition. In:Proc. of the 35th Chinese Control Conf. 2016. 27-29.[doi:10. 1109/ChiCC.2016.7554002]
    [20] Mahmood SF, Marhaban MH, Rokhani FZ, et al. FASTA-ELM:A fast adaptive shrinkage/thresholding algorithm for extreme learning machine and its application to gender recognition. Neurocomputing, 2017,219(5):312-322.[doi:10.1016/j.neucom.2016. 09.046]
    [21] Liew S, Khalil-Hani M, Syafeeza A, et al. Gender classification:A convolutional neural network approach. Turkish Journal of Electrical Engineering & Computer Sciences, 2016,24:1248-1264.[doi:10.3906/elk-1311-58]
    [22] Coco MD, Carcagni P, Leo M, et al. Assessment of deep learning for gender classification on traditional datasets. In:Proc. of the 13th IEEE Int'l Conf. on Advanced Video and Signal Based Surveillance. 2016. 271-277.[doi:10.1109/AVSS.2016.7738061]
    [23] Juefeixu F, Verma E, Goel P, et al. DeepGender:Occlusion and low resolution robust facial gender classification via progressively trained convolutional neural networks with attention. In:Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition Workshops. 2016. 68-77.[doi:10.1109/CVPRW.2016.24]
    [24] Mansanet J, Albiol A, Paredes R. Local deep neural networks for gender recognition. Pattern Recognition Letters, 2016,70:80-86.[doi:10.1016/j.patrec.2015.11.015]
    [25] Antipov G, Berrani SA, Dugelay JL. Minimalistic CNN-based ensemble model for gender prediction from face images. Pattern Recognition Letters, 2016,70:59-65.[doi:10.1016/j.patrec.2015.11.011]
    [26] Guo G, Mu G. Human age estimation:What is the influence across race and gender? In:Proc. of the IEEE Int'l Conf. on Computer Vision and Pattern Recognition Workshops. 2010. 71-78.[doi:10.1109/CVPRW.2010.5543609]
    [27] Geng X, Smithmiles K. Facial age estimation by multilinear subspace analysis. In:Proc. of the IEEE Int'l Conf. on Acoustics, Speech and Signal Processing. 2009. 865-868.[doi:10.1109/ICASSP.2009.4959721]
    [28] Kim K, Kang S, Chi S, et al. Human age estimation using multi-class SVM. In:Proc. of the Int'l Conf. on Ubiquitous Robots and Ambient Intelligence. 2015. 370-372.[doi:10.1109/URAI.2015.7358911]
    [29] Zhang C, Guo G. Age estimation with expression changes using multiple aging subspaces. In:Proc. of the IEEE Int'l Conf. on Biometrics:Theory, Applications and Systems. 2013. 1-6.[doi:10.1109/BTAS.2013.6712720]
    [30] Li Z, Fu Y, Huang T. A robust framework for multi-view age estimation. In:Proc. of the Int'l Conf. on Computer Vision and Pattern Recognition Workshops. 2010. 9-16.[doi:10.1109/CVPRW.2010.5543813]
    [31] Guo G, Mu G, Fu Y, et al. A study on automatic age estimation using a large database. In:Proc. of the 12th IEEE Int'l Conf. on Computer Vision. 2009. 1986-1991.[doi:10.1109/ICCV.2009.5459438]
    [32] Wang X, Guo G. A study on human age estimation under facial expression changes. In:Proc. of the IEEE Int'l Conf. on Computer Vision and Pattern Recognition. 2012. 2547-2553.[doi:10.1109/CVPR.2012.6247972]
    [33] Guo G, Mu G, Fu Y, et al. Human age estimation using bio-inspired features. In:Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition. 2009. 112-119.[doi:10.1109/CVPR.2009.5206681]
    [34] Torrisi A, Farinella GM, Puglisi G, et al. Selecting discriminative CLBP patterns for age estimation. In:Proc. of the IEEE Int'l Conf. on Multimedia & Expo Workshops. 2015. 1-6.[doi:10.1109/ICMEW.2015.7169755]
    [35] Yu Q, Du JY. Age estimation of facial image based on an improved non-negative matrix factorization algorithm. Journal of Image and Graphics, 2008,13(10):1865-1868(in Chinese with English abstract).[doi:10.11834/jig.20091029]
    [36] Du JY, Zhai CM, Shang L. Age automation estimation based on a ICA coefficient sparse description algorithm. Journal of Image and Graphics, 2009,14(10):2102-2105(in Chinese with English abstract).[doi:10.11834/jig.20091029]
    [37] Lu J, Liong VE, Zhou J. Cost-sensitive local binary feature learning for facial age estimation. IEEE Trans. on Image Processing, 2015,24(12):5356-5368.[doi:10.1109/TIP.2015.2481327]
    [38] Geng X, Yin C, Zhou ZH. Facial age estimation by learning from label distributions. IEEE Trans. on Pattern Analysis & Machine Intelligence, 2013,35(10):2401-2412.[doi:10.1109/TPAMI.2013.51]
    [39] Geng X, Wang Q, Xia Y. Facial age estimation by adaptive label distribution learning. In:Proc. of the 22nd IEEE Int'l Conf. on Pattern Recognition. 2014. 4465-4470.[doi:10.1109/ICPR.2014.764]
    [40] Huo Z, Yang X, Xing C, et al. Deep age distribution learning for apparent age estimation. In:Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition Workshops. 2016. 17-24.[doi:10.1109/CVPRW.2016.95]
    [41] Yang X, Gao B, Xing C, et al. Deep label distribution learning for apparent age estimation. In:Proc. of the IEEE Int'l Conf. on Computer Vision Workshop. 2015. 344-350.[doi:10.1109/ICCVW.2015.53]
    [42] Li C, Liu Q, Liu J, et al. Learning distance metric regression for facial age estimation. In:Proc. of the 21st IEEE Int'l Conf. on Pattern Recognition. 2012. 2327-2330.
    [43] Tian Q, Chen S, Qiao L. Ordinal margin metric learning and its extension for cross-distribution image data. Information Sciences, 2016,349:50-64.[doi:10.1016/j.ins.2016.02.033]
    [44] Tian Q, Chen S. Cross-heterogeneous-database age estimation with co-representation among them. In:Proc. of the Int'l Conf. on Pattern Recognition. 2016. 1333-1338.[doi:10.1109/ICPR.2016.7899822]
    [45] Suo J, Wu T, Zhu S, et al. Design sparse features for age estimation using hierarchical face model. In:Proc. of the 8th IEEE Int'l Conf. on Automatic Face & Gesture Recognition. 2008. 1-6.[doi:10.1109/AFGR.2008.4813314]
    [46] Chen C, Yang W, Wang Y, et al. Learning gabor features for facial age estimation. In:Sun Z, Lai Z, Chen X, Tan T, eds. Biometric Recognition. Lecture Notes in Computer Science, Beijing, 2011. 204-213.[doi:10.1007/978-3-642-25449-9_26]
    [47] Chen K, Gong S, Xiang T, et al. Cumulative attribute space for age and crowd density estimation. In:Proc. of the IEEE Int'l Conf. on Computer Vision and Pattern Recognition. 2013. 2467-2474.[doi:10.1109/CVPR.2013.319]
    [48] Zhu Y, Li Y, Mu G, et al. A study on apparent age estimation. In:Proc. of the IEEE Int'l Conf. on Computer Vision Workshop. 2015. 267-273.[doi:10.1109/ICCVW.2015.43]
    [49] Tian Q, Chen S. Cumulative attribute relation regularization learning for human age estimation. Neurocomputing, 2015,165:456-467.[doi:10.1016/j.neucom.2015.03.078]
    [50] Fernández C, Huerta I, Prati A. A comparative evaluation of regression learning algorithms for facial age estimation. In:Ji Q, Moeslund TB, Hua G, Nasrollahi K, eds. Face and Facial Expression Recognition from Real World Videos. Lecture Notes in Computer Science, Stockholm, 2015. 133-144.[doi:10.1007/978-3-319-13737-7_12]
    [51] Liang Y, Liu L, Xu Y, et al. Multi-task GLOH feature selection for human age estimation. In:Proc. of the 18th IEEE Int'l Conf. on Image Processing. 2011. 565-568.[doi:10.1109/ICIP.2011.6116611]
    [52] Lu J, Tan Y. Fusing shape and texture information for facial age estimation. In:Proc. of the IEEE Int'l Conf. on Acoustics, Speech, and Signal Processing. 2011. 1477-1480.[doi:10.1109/ICASSP.2011.5946772]
    [53] Lu J, Tan Y. Ordinary preserving manifold analysis for human age estimation. In:Proc. of the IEEE Computer Society Conf. on Computer Vision and Pattern Recognition Workshops. 2010. 90-95.[doi:10.1109/TSMCC.2012.2192727]
    [54] Lu J, Tan Y. Ordinary preserving manifold analysis for human age and head pose estimation. IEEE Trans. on Human-machine Systems, 2013,43(2):249-258.[doi:10.1109/TSMCC.2012.2192727]
    [55] Geng X, Zhou ZH, Zhang Y, et al. Learning from facial aging patterns for automatic age estimation. In:Proc. of the 14th ACM Int'l Conf. on Multimedia. 2006. 307-316.[doi:10.1145/1180639.1180711]
    [56] Xiao B, Yang XK, Xu Y, et al. Learning distance metric for regression by semidefinite programming with application to human age estimation. In:Proc. of the 17th ACM Int'l Conf. on Multimedia. 2009. 451-460.[doi:10.1145/1631272.1631334]
    [57] Liu X, Li S, Kan M, et al. AgeNet:Deeply learned regressor and classifier for robust apparent age estimation. In:Proc. of the IEEE Int'l Conf. on Computer Vision Workshop. 2015. 258-266.[doi:10.1109/ICCVW.2015.42]
    [58] Guo G, Fu Y, Dyer C, et al. A probabilistic fusion approach to human age prediction. In:Proc. of the IEEE Computer Society Conf. on Computer Vision & Pattern Recognition Workshops. 2008. 1-6.[doi:10.1109/CVPRW.2008.4563041]
    [59] Zhang Y, Zhou ZH. A new age estimation method based on ensemble learning. ACTA Automatica Sinica, 2008,34(8):997-1000(in Chinese with English abstract).[doi:10.3724/SP.J.1004.2008.00997]
    [60] Guo, G, Fu, Y, Dyer C, et al. Image-based human age estimation by manifold learning and locally adjusted robust regression. IEEE Trans. on Image Processing, 2008,17(7):1178-1188.[doi:10.1109/TIP.2008.924280]
    [61] Guo, G, Fu, Y, Huang T, et al. Locally adjusted robust regression for human age estimation. In:Proc. of the IEEE Workshop on Application of Computer Vision. 2008. 1-6.[doi:10.1109/WACV.2008.4544009]
    [62] Shu X, Tang J, Lai H, et al. Personalized age progression with aging dictionary. In:Proc. of the IEEE Int'l Conf. on Computer Vision. 2015. 3970-3978.[doi:10.1109/ICCV.2015.452]
    [63] Guo G, Mu G. Joint estimation of age, gender and ethnicity:CCA vs. PLS. In:Proc. of the 10th IEEE Int'l Conf. and Workshops on Automatic Face and Gesture Recognition. 2013. 1-6.[doi:10.1109/FG.2013.6553737]
    [64] Guo G, Mu G. A framework for joint estimation of age, gender and ethnicity on a large database. Image & Vision Computing, 2014,32(10):761-770.[doi:10.1016/j.imavis.2014.04.011]
    [65] Guo G, Mu G. A study of large-scale ethnicity estimation with gender and age variations. In:Proc. of the IEEE Int'l Conf. on Computer Vision and Pattern Recognition Workshops. 2010. 79-86.[doi:10.1109/CVPRW.2010.5543608]
    [66] Andrew YN, Michael IJ. On discriminative vs. generative classifiers:A comparison of logistic regression and naïve Bayes. In:Proc. of the Neural Information Processing Systems. 2002. 605-610.
    [67] Eidinger E, Enbar R, Hassner T. Age and gender estimation of unfiltered faces. IEEE Trans. on Information Forensics & Security, 2014,9(12):2170-2179.[doi:10.1109/TIFS.2014.2359646]
    [68] Chen BC, Chen CS, Hsu WH. Face recognition and retrieval using cross-age reference coding with cross-age celebrity dataset. IEEE Trans. on Multimedia, 2015,17(6):804-815.[doi:10.1109/TMM.2015.2420374]
    [69] Li K, Xing J, Hu W, et al. D2C:Deep cumulatively and comparatively learning for human age estimation. Pattern Recognition, 2017,66:95-105.[doi:10.1016/j.patcog.2017.01.007]
    [70] Tian Q, Chen S. Joint gender classification and age estimation by nearly orthogonalizing their semantic spaces. Image and Vision computing, 2018,69:9-21.[doi:10.1016/j.imavis.2017.10.003]
    [71] Xing J, Li K, Hu W, et al. Diagnosing deep learning models for high accuracy age estimation from a single image. Pattern Recognition, 2017,66:106-116.[doi:10.1016/j.patcog.2017.01.005]
    [72] Lu X, Jain A. Ethnicity identification from face images. Int'l Society for Optics and Photonics, 2004,5404:114-123.
    [73] Lu H, Liu J, Li C, et al. Learning ordinal discriminative features for age estimation. In:Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition. 2012. 2570-2577.[doi:10.1109/CVPR.2012.6247975]
    [74] He Z, Li X, Zhang Z, et al. Data-dependent label distribution learning for age estimation. IEEE Trans. on Image Processing, 2017, 26(8):3846-3858.[doi:10.1109/TIP.2017.2655445]
    [75] Rothe R, Timofte R, Gool LV. DEX:Deep expectation of apparent age from a single image. In:Proc. of the IEEE Int'l Conf. on Computer Vision Workshop. 2015. 252-257.[doi:10.1109/ICCVW.2015.41]
    [76] Rothe R, Timofte R, Gool LV. Deep expectation of real and apparent age from a single image without facial landmarks. Int'l Journal of Computer Vision, 2018,4:144-157.[doi:10.1007/s11263-016-0940-3]
    [77] Lou Z, Alnajar F, Alvarez JM, et al. Expression-invariant age estimation using structured learning. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2018,40(2):365-375.[doi:10.1109/TPAMI.2017.2679739]
    [78] Li Y, Peng Z, Liang D, et al. Facial age estimation by using stacked feature composition and selection. The Visual Computer, 2016,32(12):1525-1536.[doi:10.1007/s00371-015-1137-4]
    [79] Niu Z, Zhou M, Wang L, et al. Ordinal regression with multiple output CNN for age estimation. In:Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition. 2016. 4920-4928.[doi:10.1109/CVPR.2016.532]
    [80] Shu X, Tang J, Li Z, et al. Personalized age progression with bi-level aging dictionary learning. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2017,40:905-917.[doi:10.1109/TPAMI.2017.2705122]
    [81] Guo G, Zhang C. A study on cross-population age estimation. In:Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition. 2014. 4257-4263.[doi:10.1109/CVPR.2014.542]
    [82] Li K, Xing J, Su C, Hu W, et al. Deep cost-sensitive and order-preserving feature learning for cross-population age estimation. In:Proc. of the IEEE Int'l Conf. on Computer Vision and Pattern Recognition. 2018. 399-408.[doi:10.1109/CVPR.2018.00049]
    [83] Guo G, Dyer CR, Fu Y, et al. Is gender recognition affected by age? In:Proc. of the 12th IEEE Int'l Conf. on Computer Vision Workshops. 2009. 2032-2039.[doi:10.1109/ICCVW.2009.5457531]
    [84] Wang Y, Ricanek K, Chen C, et al. Gender classification from infants to seniors. In:Proc. of the IEEE Int'l Conf. on Biometrics:Theory Applications and Systems. 2010. 1-6.[doi:10.1109/BTAS.2010.5634518]
    [85] Lu X, Chen H, Jain AK. Multimodal facial gender and ethnicity identification. In:Zhang D, Jain AK, eds. Advances in Biometrics. Lecture Notes in Computer Science, Hong Kong, 2006. 554-561.[doi:10.1007/11608288_74]
    [86] Narang N, Bourlai T. Gender and ethnicity classification using deep learning in heterogeneous face recognition. In:Proc. of the Int'l Conf. on Biometrics. 2016. 1-8.[doi:10.1109/ICB.2016.7550082]
    [87] Ozbulak G, Aytar Y, Ekenel HK. How transferable are CNN-based features for age and gender classification. In:Proc. of the Int'l Conf. of the Biometrics Special Interest Group. 2016. 1-6.[doi:10.1109/BIOSIG.2016.7736925]
    [88] Levi G. Age and gender classification using convolutional neural networks. In:Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition Workshops. 2015. 34-42.[doi:10.1109/CVPRW.2015.7301352]
    [89] Uricar M, Timofte R, Rothe R, et al. Structured output SVM prediction of apparent age, gender and smile from deep features. In:Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition Workshops. 2016. 730-738.[doi:10.1109/CVPRW.2016.96]
    [90] Tian Q, Chen S, Tan X. A unified gender-aware age estimation. In:Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition. 2016. 1-8.
    [91] Guo G, Mu G. Simultaneous dimensionality reduction and human age estimation via kernel partial least squares regression. In:Proc. of the IEEE Int'l Conf. on Computer Vision and Pattern Recognition. 2011. 657-664.[doi:10.1109/CVPR.2011.5995404]
    [92] Yi D, Lei Z, Li SZ. Age estimation by multi-scale convolutional network. In:Cremers D, Reid I, Saito H, Yang MH, eds. Proc. of the Computer Vision-ACCV 2014. Lecture Notes in Computer Science, Singapore, 2014. 144-158.[doi:10.1007/978-3-319-16811-1_10]
    附中文参考文献:
    [1] 陆丽.基于人脸图像的性别识别与年龄估计研究[博士学位论文].上海:上海交通大学,2010.
    [35] 余庆,杜吉祥.基于一种改进的NMF算法的人脸年龄估计方法.中国图像图形学报,2008,13(10):1865-1868.
    [36] 杜吉祥,翟传敏,尚丽.基于ICA系数稀疏表示的年龄自动估计.中国图像图形学报,2009,14(10):2102-2105.
    [59] 张宇,周志华.基于集成的年龄估计方法.自动化学报,2008,34(8):997-1000.
    相似文献
    引证文献
引用本文

曹猛,田青,马廷淮,陈松灿.人类面部属性估计研究:综述.软件学报,2019,30(7):2188-2207

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2018-08-08
  • 最后修改日期:2018-12-27
  • 在线发布日期: 2019-04-11
文章二维码
您是第19894521位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号