多用户眼动跟踪数据的可视化共享与协同交互
CSTR:
作者:
作者单位:

作者简介:

程时伟(1981-),男,湖北黄石人,博士,教授,博士生导师,CCF高级会员,主要研究领域为人机交互,普适计算,协同计算;孙凌云(1981-),男,博士,教授,博士生导师,CCF专业会员,主要研究领域为人工智能,设计智能,信息与交互设计;沈哓权(1991-),男,硕士,主要研究领域为人机交互;胡屹凛(1994-),女,硕士,主要研究领域为人机交互.

通讯作者:

程时伟,E-mail:swc@zjut.edu.cn

中图分类号:

基金项目:

国家重点研发计划(2016YFB1001403);国家自然科学基金(61772468,61672451)


Shared Visualization and Collaborative Interaction Based on Multiple User Eye Tracking Data
Author:
Affiliation:

Fund Project:

National Key Research & Development Program of China (2016YFB1001403); National Natural Science Foundation of China (61772468, 61672451)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    随着数字图像处理技术的发展,以及计算机支持的协同工作研究的深入,眼动跟踪开始应用于多用户协同交互.但是已有的眼动跟踪技术主要针对单个用户,多用户眼动跟踪计算架构不成熟、标定过程复杂,眼动跟踪数据的记录、传输以及可视化共享机制都有待深入研究.为此,建立了基于梯度优化的协同标定模型,简化多用户的眼动跟踪标定过程;然后提出面向多用户的眼动跟踪计算架构,优化眼动跟踪数据的传输和管理.进一步地,探索眼动跟踪数据的可视化形式在协同交互环境下对用户视觉注意行为的影响,具体设计了圆点、散点、轨迹这3种可视化形式,并验证了圆点形式能够有效地提高多用户协同搜索任务的完成效率.在此基础上,设计与开发了基于眼动跟踪的代码协同审查系统,实现了代码审查过程中多用户眼动跟踪数据的同步记录、分发,以及基于实时注视点、代码行边框和背景灰度、代码行之间连线的可视化共享.用户实验结果表明,代码错误的平均搜索时间比没有眼动跟踪数据可视化分享时减少了20.1%,显著提高了协同工作效率,验证了该方法的有效性.

    Abstract:

    With the development of digital image processing technology and computer supported cooperative work, eye tracking has been applied in the process of multiuser collaborative interaction. However, existed eye tracking technique can only track single user's gaze, and the computing framework for multiple user's gaze data tracking is not mature; besides, the calibration process is much complex, and the eye tracking data recording, transition, and visualization mechanisms need to be further explored. Hence, this study proposed a new collaborative calibration method based on gradient optimization algorithms, so as to simplify the calibration process; and then in order to optimize the eye tracking data transition and management, the computing framework oriented to multiple user's eye tracking is proposed. Furthermore, to explore the influence of visual attention caused by visualization of eye tracking data sharing among multiple users, visualizations such as dots, clusters and trajectories are designed, and it is validated that the dots could improve the efficiency for collaborative visual search tasks. Finally, the code collaborative review systems are designed and built based on eye tracking, and this system could record, deliver, and visualize the eye tracking data in the forms of dots, code borders, code background, lines connected codes, among the code reviewing process. The user experiment result shows that, compared to the no eye tracking data sharing condition, sharing eye tracking data among multiple users can reduce the bug searching time with 20.1%, significantly improves the efficiency of collaborative work, and it validates the effectiveness of the proposed approach.

    参考文献
    相似文献
    引证文献
引用本文

程时伟,沈哓权,孙凌云,胡屹凛.多用户眼动跟踪数据的可视化共享与协同交互.软件学报,2019,30(10):3037-3053

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2018-08-18
  • 最后修改日期:2018-11-01
  • 录用日期:
  • 在线发布日期: 2019-05-16
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号