CNN实现的运动想象脑电分类及人-机器人交互
CSTR:
作者:
作者单位:

作者简介:

程时伟(1981-),男,湖北黄石人,博士,教授,博士生导师,CCF高级会员,主要研究领域为人机交互,普适计算,协同计算;范菁(1969-),女,博士,教授,博士生导师, CCF杰出会员,主要研究领域为服务计算,虚拟现实,人机交互;周桃春(1992-),男,硕士,主要研究领域为人机交互;孙凌云(1981-)男,博士,教授,博士生导师,CCF专业会员,主要研究领域为人工智能,设计智能,信息与交互设计;唐智川(1987-),男,博士,副教授,CCF专业会员,主要研究领域为脑机接口,人机交互,人机工程,智能设计;朱安杰(1994-),男,学士,主要研究领域为人机交互.

通讯作者:

范菁,E-mail:fanjing@zjut.edu.cn

中图分类号:

基金项目:

国家重点研发计划(2016YFB1001403);国家自然科学基金(61772468,61702454,61672451)


CNN Based Motor Imagery EEG Classification and Human-robot Interaction
Author:
Affiliation:

Fund Project:

National Key Research & Development Program of China (2016YFB1001403); National Natural Science Foundation of China (61772468, 61702454, 61672451)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    基于脑电的脑机交互能帮助肢体运动障碍患者进行日常生活和康复训练,但是,由于脑电信号存在信噪比较低、个体差异性大等问题,导致脑电特征的提取与分类还需要进一步提高准确性和效率.因此,在减少脑电采集通道数目、增加分类数目的前提下,基于卷积神经网络对运动想象中的脑电信号进行分类.首先,基于已有方法进行探索实验,建立由3层卷积层、3层池化层和2层全连接层构成的卷积神经网络;然后针对想象左手、右手、脚的运动和静息态设计与开展了实验,获取了相关脑电数据;之后,利用脑电数据训练出基于卷积神经网络的分类模型,测试结果表明,该模型平均分类识别率达到了82.81%,且高于已有的相关分类算法;最后,将已建立的分类模型应用于运动想象信号的在线分类,设计与开发了脑机交互应用原型系统,驱动人-机器人之间的实时交互,帮助用户利用运动想象控制仿人机器人的抬手、前进等运动状态.进一步的测试结果表明,机器人对用户控制命令的平均识别率达到了80.31%,从而验证了所提方法可以对运动想象脑电数据进行较为精确的实时分类,可以促进脑机接口技术在人-机器人交互中的应用.

    Abstract:

    The electroencephalograph (EEG) driven brain-computer interaction can promote daily life and rehabilitation training for physically disabled people, however, EEG has several problems such as low signal-noise ratio, significant individual difference, and these problems result in the low accuracy and efficiency for EEG feature extraction and classification. In the context of reducing numbers of electrodes and increasing identified classes, this study proposed an approach to classify motor imagery (MI) EEG signal based on convolutional neural network (CNN). Firstly, based on existed approaches, experiments were conducted and the CNN was constructed with three convolution layers, three pooling layers, and two full-connection layers. Secondly, MI experiment was conducted with the imagination of left hand movement, right hand movement, foot movement, and resting state, and the MI EEG data were collected at the same time. Thirdly, the MI EEG data set were used to build the classification model based on CNN, and the experiment results indicate that the average accuracy of classification is 82.81%, which is higher than the related classification algorithms. Finally, the classification model was applied in the online classification of MI EEG, and a BCI prototype system was designed and implemented to drive the real-time human-robot interaction. The prototype system can help users to control motion states of the humanoid robot, such as raising hands, moving forward. Furthermore, the experimental results show that the average accuracy of robot controlling reaches to 80.31%, and it verifies the proposed approach not only can classify MI EEG data with high accuracy in real time, but also promote applications of human-robot interaction with BCI.

    参考文献
    相似文献
    引证文献
引用本文

程时伟,周桃春,唐智川,范菁,孙凌云,朱安杰. CNN实现的运动想象脑电分类及人-机器人交互.软件学报,2019,30(10):3005-3016

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2018-08-18
  • 最后修改日期:2018-11-01
  • 录用日期:
  • 在线发布日期: 2019-05-16
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号