面向比特币交易网络的拓扑结构可视探索方法
作者:
作者简介:

潘嘉铖(1995-),男,浙江绍兴人,硕士,主要研究领域为可视化,可视分析;郑文庭(1974-),男,博士,副教授,主要研究领域为计算机图形学,虚拟现实,可视化;韩东明(1995-),男,博士,主要研究领域为可视化,可视分析;于金辉(1960-),男,博士,教授,博士生导师,主要研究领域为符号信息挖掘,非真实感绘制,计算机图形学,数字艺术;郭方舟(1991-),男,博士,主要研究领域为可视化,可视分析;陈为(1976-),男,博士,教授,博士生导师, CCF高级会员,可视化,可视分析,大数据分析,人机混合智能.

通讯作者:

郑文庭,E-mail:wtzheng@cad.zju.edu.cn

基金项目:

国家重点研发专项(2018YFB0904503);国家自然科学基金(61772456,U1609217,61772463)


Visual Exploration of Topological Structure for Bitcoin Trading Network
Author:
Fund Project:

National Key Research and Development Program of China (2018YFB0904503); National Natural Science Foundation of China (61772456, U1609217, 61772463)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [45]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    分析比特币交易网络有助于人们理解交易者在比特币交易中的交易模式.比特币交易网络的匿名性和其巨大的规模使得用户很难在分析前对整个交易网络产生大致的认知.提出了一种基于拓扑结构推荐的比特币交易网络可视分析方法.核心思想是为每个节点生成一个向量化表达,在用户交互的基础上,所提算法即可检测一系列相似的结构.案例分析证明了系统能够支持用户对比特币交易中的交易模式进行探索和分析.

    Abstract:

    Bitcoin transaction network analysis helps people understand the trading patterns in bitcoin transactions. Bitcoin trading network is anonymous and large-scale making it difficult for users to gain insight from the entire trading network. A visual exploration approach for bitcoin trading network is proposed based on topological structure recommendation to support the interactive exploration in Bitcoin trading network. The key idea of the proposed approach is to generate a vectorized representation for each node, and consequently a set of similar structures can be easily found upon user intention. The case study demonstrates the effectiveness of the approach in supporting exploration and analysis of trading patterns of Bitcoin transactions.

    参考文献
    [1] Crnovrsanin T, Liao I, Wu Y, et al. Visual recommendations for network navigation. Computer Graphics Forum, 2011,30(3):1081-1090.
    [2] Srinivasan A, Stasko J. Orko:Facilitating multimodal interaction for visual exploration and analysis of networks. IEEE Trans. on Visualization and Computer Graphics, 2018,24(1):511-521.
    [3] Van Ham F, Perer A. "Search, show context, expand on demand":Supporting large graph exploration with degree-of-interest. IEEE Trans. on Visualization and Computer Graphics, 2009,15(6).
    [4] Moscovich T, Chevalier F, Henry N, et al. Topology-aware navigation in large networks. In:Proc. of the SIGCHI Conf. on Human Factors in Computing Systems. ACM, 2009. 2319-2328.
    [5] Chau DH, Kittur A, Hong JI, et al. Apolo:Making sense of large network data by combining rich user interaction and machine learning. In:Proc. of the SIGCHI Conf. on Human Factors in Computing Systems. ACM, 2011. 167-176.
    [6] Pienta R, Kahng M, Lin Z, et al. Facets:Adaptive local exploration of large graphs. In:Proc. of the 2017 SIAM Int'l Conf. on Data Mining. Society for Industrial and Applied Mathematics, 2017. 597-605.
    [7] Cordella LP, Foggia P, Sansone C, et al. An improved algorithm for matching large graphs. In:Proc. of the 3rd IAPR-TC15 Workshop on Graph-based Representations in Pattern Recognition. 2001. 149-159.
    [8] Ding X, Jia J, Li J, et al. Top-k similarity matching in large graphs with attributes. In:Proc. of the Int'l Conf. on Database Systems for Advanced Applications. Cham:Springer-Verlag, 2014. 156-170.
    [9] Baumann A, Fabian B, Lischke M. Exploring the bitcoin network. In:Proc. of the WEBIST (1). 2014. 369-374.
    [10] Di Battista G, Di Donato V, Patrignani M, et al. Bitconeview:Visualization of flows in the bitcoin transaction graph. In:Proc. of the 2015 IEEE Symp. on Visualization for Cyber Security (VizSec). IEEE, 2015. 1-8.
    [11] Kinkeldey C, Fekete JD, Isenberg P. BitConduite:Visualizing and analyzing activity on the bitcoin network. In:Proc. of the EuroVis 2017-Eurographics Conf. on Visualization. 2017. 3.
    [12] Moser M, Bohme R, Breuker D. An inquiry into money laundering tools in the bitcoin ecosystem. In:Proc. of the eCrime Researchers Summit (eCRS). IEEE, 2013. 1-14.
    [13] McGinn D, Birch D, Akroyd D, et al. Visualizing dynamic bitcoin transaction patterns. Big Data, 2016,4(2):109-119.
    [14] Pienta R, Abello J, Kahng M, et al. Scalable graph exploration and visualization:Sensemaking challenges and opportunities. In:Proc. of the 2015 Int'l Conf. on Big Data and Smart Computing (BigComp). IEEE, 2015. 271-278.
    [15] Börner K, Chen C, Boyack KW. Visualizing knowledge domains. Annual Review of Information Science and Technology, 2003,37(1):179-255.
    [16] Heer J, Boyd D. Vizster:Visualizing online social networks. In:Proc. of the Information Visualization. 2005. 5.
    [17] Abello J, Van Ham F, Krishnan N. Ask-graphview:A large scale graph visualization system. IEEE Trans. on Visualization and Computer Graphics, 2006,12(5):669-676.
    [18] Tian Y, Hankins RA, Patel JM. Efficient aggregation for graph summarization. In:Proc. of the 2008 ACM SIGMOD Int'l Conf. on Management of Data. ACM, 2008. 567-580.
    [19] Leskovec J, Kleinberg J, Faloutsos C. Graph evolution:Densification and shrinking diameters. ACM Trans. on Knowledge Discovery from Data (TKDD), 2007,1(1):2.
    [20] Jia Y, Hoberock J, Garland M, et al. On the visualization of social and other scale-free networks. IEEE Trans. on Visualization and Computer Graphics, 2008,14(6):1285-1292.
    [21] Holten D. Hierarchical edge bundles:Visualization of adjacency relations in hierarchical data. IEEE Trans. on Visualization and Computer Graphics, 2006,12(5):741-748.
    [22] Zhou H, Xu P, Yuan X, et al. Edge bundling in information visualization. Tsinghua Science and Technology, 2013,18(2):145-156.
    [23] Elmqvist N, Do TN, Goodell H, et al. ZAME:Interactive large-scale graph visualization. In:Proc. of the Visualization Symp., PacificVIS 2008. IEEE, 2008. 215-222.
    [24] Tominski C, Abello J, Van Ham F, et al. Fisheye tree views and lenses for graph visualization. In:Proc. of the 14th Int'l Conf. Information Visualisation. IEEE, 2006. 17-24.
    [25] Lee B, Parr CS, Plaisant C, et al. Treeplus:Interactive exploration of networks with enhanced tree layouts. IEEE Trans. on Visualization and Computer Graphics, 2006,12(6):1414-1426.
    [26] Gou L, You F, Guo J, et al. Sfviz:Interest-based friends exploration and recommendation in social networks. In:Proc. of the 2011 Visual Information Communication-Int'l Symp. ACM, 2011. 15.
    [27] Card SK, Nation D. Degree-of-interest trees:A component of an attention-reactive user interface. In:Proc. of the Working Conf. on Advanced Visual Interfaces. ACM, 2002. 231-245.
    [28] Ghani S, Riche NH, Elmqvist N. Dynamic insets for context-aware graph navigation. Computer Graphics Forum, 2011,30(3):861-870.
    [29] Maaten L, Hinton G. Visualizing data using t-SNE. Journal of Machine Learning Research, 2008,9(11):2579-2605.
    [30] Abello J, Hadlak S, Schumann H, et al. A modular degree-of-interest specification for the visual analysis of large dynamic networks. IEEE Trans. on Visualization and Computer Graphics, 2014,20(3):337-350.
    [31] Kairam S, Riche NH, Drucker S, et al. Refinery:Visual exploration of large, heterogeneous networks through associative browsing. Computer Graphics Forum, 2015,34(3):301-310.
    [32] Cao N, Lin YR, Li L, et al. g-miner:Interactive visual group mining on multivariate graphs. In:Proc. of the 33rd Annual ACM Conf. on Human Factors in Computing Systems. ACM, 2015. 279-288.
    [33] Chau DH, Faloutsos C, Tong H, et al. Graphite:A visual query system for large graphs. In:Proc. of the IEEE Int'l Conf. on Data Mining Workshops, ICDMW 2008. IEEE, 2008. 963-966.
    [34] Bhowmick SS, Choi B, Zhou S. VOGUE:Towards a visual interaction-aware graph query processing framework. In:Proc. of the CIDR. 2013.
    [35] Pienta R, Tamersoy A, Endert A, et al. Visage:Interactive visual graph querying. In:Proc. of the Int'l Working Conf. on Advanced Visual Interfaces. ACM, 2016. 272-279.
    [36] Pienta R, Hohman F, Endert A, et al. VIGOR:Interactive visual exploration of graph query results. IEEE Trans. on Visualization and Computer Graphics, 2018,24(1):215-225.
    [37] Ramraj T, Prabhakar R. Frequent subgraph mining algorithms-A survey. Procedia Computer Science, 2015,47:197-204.
    [38] Jiang C, Coenen F, Zito M. A survey of frequent subgraph mining algorithms. The Knowledge Engineering Review, 2013,28(1):75-105.
    [39] Carletti V, Foggia P, Vento M. VF2 Plus:An improved version of VF2 for biological graphs. In:Proc. of the Int'l Workshop on Graph-based Representations in Pattern Recognition. Cham:Springer-Verlag, 2015. 168-177.
    [40] Carletti V, Foggia P, Saggese A, et al. Introducing VF3:A new algorithm for subgraph isomorphism. In:Proc. of the Int'l Workshop on Graph-based Representations in Pattern Recognition. Cham:Springer-Verlag, 2017. 128-139.
    [41] Yan X, Han J. gspan:Graph-based substructure pattern mining. In:Proc. of the IEEE Int'l Conf. on Data Mining, ICDM 2002. IEEE, 2002. 721-724.
    [42] Elseidy M, Abdelhamid E, Skiadopoulos S, et al. Grami:Frequent subgraph and pattern mining in a single large graph. Proc. of the VLDB Endowment, 2014,7(7):517-528.
    [43] Donnat C, Zitnik M, Hallac D, et al. Learning structural node embeddings via diffusion wavelets. arXiv Preprint arXiv:1710.10321, 2018.
    [44] Dal Col A, Valdivia P, Petronetto F, et al. Wavelet-based visual analysis of dynamic networks. IEEE Trans. on Visualization and Computer Graphics, 2018,24(8):2456-2469.
    [45] Shervashidze N, Schweitzer P, Leeuwen EJ, et al. Weisfeiler-Lehman graph kernels. Journal of Machine Learning Research, 2011, 12(9):2539-2561.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

潘嘉铖,韩东明,郭方舟,郑文庭,于金辉,陈为.面向比特币交易网络的拓扑结构可视探索方法.软件学报,2019,30(10):3017-3025

复制
分享
文章指标
  • 点击次数:3808
  • 下载次数: 6976
  • HTML阅读次数: 3439
  • 引用次数: 0
历史
  • 收稿日期:2018-08-17
  • 最后修改日期:2018-11-01
  • 在线发布日期: 2019-05-16
文章二维码
您是第19780803位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号