基于SVM的多项式循环程序秩函数生成
作者:
作者简介:

李轶(1980-),男,重庆人,博士,副研究员,CCF专业会员,主要研究领域为程序验证,符号计算;冯勇(1965-),男,博士,研究员,博士生导师,主要研究领域为数值混合计算;蔡天训(1993-),男,工程师,主要研究领域为程序验证,嵌入式系统;吴文渊(1976-),男,博士,研究员,主要研究领域为同伦计算.樊建峰(1993-),男,硕士生,CCF学生会员,主要研究领域为程序验证,区块链.

通讯作者:

李轶,E-mail:zm_liyi@163.com

中图分类号:

TP301

基金项目:

国家自然科学基金(61572024,61103110,11471307)


SVM-based Method for Detecting Ranking Functions in Polynomial Loop Programs
Author:
Fund Project:

National Natural Science Foundation of China (61572024, 61103110, 11471307)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [29]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    程序终止性问题是自动程序验证领域中的一个研究热点.秩函数探测是进行终止性分析的主要方法.针对单重无条件分支的多项式循环程序,将其秩函数计算问题归结为二分类问题,从而可利用支持向量机(SVM)算法来计算程序的秩函数.与基于量词消去技术的秩函数计算方法不同,该方法能在可接受的时间范围内探测到更为复杂的秩函数.

    Abstract:

    Synthesizing ranking functions of polynomial loop programs is the dominant method for checking their termination. In this study, the synthesis of ranking functions of a class of polynomial loop program is reduced to the binary problem. The support vector machine (SVM) technique then is applied to solve such the binary problem. This naturally relates detection of ranking functions to SVM. Different from the CAD-based method for synthesizing ranking functions, the proposed method can get more expressive polynomial ranking functions in an acceptable time.

    参考文献
    [1] Turing A. On computable numbers, with all application to the entscheidungsproblem. London Mathematical Socity, 1936,42(2):230-265.
    [2] Yang L, Zhou CC, Zhan NJ, Xia BC. Recent advances in program verification through computer algebra. Frontiers of Computer Science, 2010,4(1):1-16.
    [3] Tiwari A. Termination of linear programs. Computer Aided Verification, 2004,3114:70-82.
    [4] Braverman M. Termination of integer linear programs. In:Ball T, Jones RB, eds. Proc. of the Computer Aided Verification (CAV 2006). Springer-Verlag, 2006. 372-385.
    [5] Xia BC, Yang L, Zhan NJ, Zhang ZH. Symbolic decision procedure for termination of linear programs. Formal Aspects of Computing, 2009,23(2):171-190.
    [6] Xia BC, Zhang ZH. Termination of linear programs with nonlinear constraints. Journal of Symbolic Computation, 2010,45(11):1234-1249.
    [7] Li Y. Witness to non-termination of linear programs. Theoretical Computer Science, 2017,681:75-100.
    [8] Liu J, Xu M, Zhan NJ, Zhao HJ. Discovering non-terminating inputs for multi-path polynomial programs. Journal of Systems Science and Complexity, 2014,27:1284-1304.
    [9] Chen YF, Heizmann M, Lengal O, Li Y, Tsai MH, Turrini A, Zhang LJ. Advanced automate-based algorithms for program termination checking. In:Proc. of the ACM SIGPLAN Conf. on Programming Language Design and Implementation (PLDI 2018). ACM, 2018. 135-150.
    [10] Zhang J. A path-based approach to the detection of infinite looping. In:Proc. of the 2nd Asia-Pacific Conf. on Quality Software (APAQS 2001). Hong Kong:IEEE Computer Society, 2001. 88-96.
    [11] Leike J, Heizmann M. Geometric nontermination arguments. In:Proc. of the 24th Int'l Conf. on Tools and Algorithms for the Construction and Analysis of Systems (TACAS 2018). Berlin, Heidelberg:Springer-Verlag, 2018,10806:266-283.
    [12] Colón M, Sipma H. Synthesis of linear ranking functions. In:Margaria T, Yi W, eds. In:Proc. of the 7th Int'l Conf. on Tools and Algorithms for Construction and Analysis of Systems (TACAS 2001). Springer-Verlag, 2001. 67-81.
    [13] Podelski A, Rybalchenko A. A complete method for the synthesis of linear ranking functions. In:Proc. of the Verification, Model Checking, and Abstract Interpretation (VMCAI). Berlin:Springer-Verlag, 2004. 239-251.
    [14] Bagnara R, Mesnard F, Pescetti A, Zaffanella E. A new look at the automatic synthesis of linear ranking functions. Information and Computation, 2012,215:47-67.
    [15] Bagnara R, Mesnard F. Eventual linear ranking functions. In:Proc. of the 15th Symp. on Principles and Practice of Decla-rative Programming (PPDP). Madrid:ACM Press, 2013. 229-238.
    [16] Li Y, Zhu G, Feng Y. The L-depth eventual linear ranking functions for single-path linear constraint loops. In:Proc. of the 10th Int'l Symp. on Theoretical Aspects of Software Engineering (TASE 2016). IEEE, 2016. 30-37.
    [17] Leike J, Heizmann M. Ranking templates for linear loops. In:Proc. of the 20th Int'l Conf. on Tools and Algorithms for Construction and Analysis of Systems (TACAS 2014). Berlin, Heidelberg:Springer-Verlag, 2014,8413:172-186.
    [18] Ben-Amram AM, Genaim S. On multiphase-linear ranking functions. In:Computer Aided Verification. Cham:Springer-Verlag, 2017,10427:601-620.
    [19] Chen YH, Xia BC, Yang Lu, Zhan NJ, Zhou CC. Discovering non-linear ranking functions by solving semi-algebraic systems. In:Proc. of the Int'l Colloquium on Theoretical Aspects of Computing (ICTAC 2007). Berlin:Springer-Verlag, 2007. 34-49.
    [20] Cousot P. Proving program invariance and termination by parametric abstraction, langrangian relaxation and semidefinite programming. In:Proc. of the 6th Int'l Conf. on Verification, Model Checking, and Abstract Interpretation (VMCAI 2005). Springer-Verlag, 2005. 1-24.
    [21] Shen LY, Wu M, Yang ZF, Zeng ZB. Generating exact nonlinear ranking functions by symbolic-numeric hybrid method. Journal of Systems Science and Complexity, 2013,26(2):291-301.
    [22] Li Y. Termination of semi-algebraic loop programs. In:Proc. of the Int'l Symp. on Dependable Software Engineering:Theories, Tools and Applications (SETTA 2017). Springer-Verlag, 2017. 131-146.
    [23] Platt J. Sequential minimal optimization:A fast algorithm for training support vector machines. Technical Report, MSR-TR-98-14, Microsoft Research, 1998.
    [24] Hsu CW, Chang CC, Lin CJ. A practical guide to support vector classification. Technical Report, Department of Computer Science, Taiwan University, 2003.
    [25] Zhou ZH. Machine Lerning. Beijing:Tsinghua University Press, 2016(in Chinese).
    [26] The RegularChains Library. http://regularchains.org/index.html
    [27] Redlog-Computing with Logic. http://redlog.eu/
    附中文参考文献:
    [25] 周志华.机器学习.北京:清华大学出版社,2016.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

李轶,蔡天训,樊建峰,吴文渊,冯勇.基于SVM的多项式循环程序秩函数生成.软件学报,2019,30(7):1903-1915

复制
分享
文章指标
  • 点击次数:3409
  • 下载次数: 5233
  • HTML阅读次数: 2826
  • 引用次数: 0
历史
  • 收稿日期:2018-07-10
  • 最后修改日期:2018-09-28
  • 在线发布日期: 2019-04-03
文章二维码
您是第19892892位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号