高性能联盟区块链技术研究
作者:
作者简介:

朱立(1972-),男,浙江海盐人,工程师,CCF专业会员,主要研究领域为区块链,分布式计算,高可用架构;俞欢(1990-),女,硕士,主要研究领域为区块链,分布式计算;詹士潇(1993-),男,硕士,主要研究领域为区块链,分布式计算;邱炜伟(1986-),女,博士,助理研究员,CCF专业会员,主要研究领域为区块链,分布式计算;李启雷(1982-),男,博士,讲师,CCF专业会员,主要研究领域为区块链,分布式计算,人机交互技术.

通讯作者:

李启雷,E-mail:liqilei@zju.edu.cn


Research on High-performance Consortium Blockchain Technology
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [25]
  • |
  • 相似文献
  • | | |
  • 文章评论
    摘要:

    以上海证券交易所“去中心化的主板核心交易系统”作为业务场景,旨在研究高性能联盟区块链的优化算法.在联盟链关键技术研究的基础上,结合现有主板证券竞价交易系统的业务,提出了系统架构以及关键技术的实现.对业务逻辑与共识分离、存储优化和数字签名验证优化(包括合并验签和GPU加速)等可提高联盟链性能的优化策略进行了详细的介绍和分析.最后,通过一系列对比实验来验证优化策略的有效性.实验结果表明,这些优化手段极大地提高了去中心化的主板核心交易系统的性能.

    Abstract:

    This study takes the "securities trading system" of the Shanghai Stock Exchange as a business scenario to study the optimization algorithm of the high-performance consortium blockchain. based on the research of the key technologies of the consortium blockchain and the business of the securities transaction system, this study proposes a design of the consortium blockchain architecture and conducts a detailed analysis of the key technologies that can improve the performance of the consortium blockchain, such as separation of business logic and consensus, optimization of storage, and optimization of digital signature verification (including merger verification and GPU acceleration). Finally, the study conducts a series of comparative experiments to verify the effectiveness of these optimization strategies.

    参考文献
    [1] Wyman O. Blockchain in Capital Markets:The Prize and the Journey. Euro Clear, 2016.
    [2] STELLA-Joint research project of the European Central Bank and the Bank of Japan. In:Proc. of the Payment Systems:Liquidity Saving Mechanisms in a Distributed Ledger Environment. 2017.
    [3] Santo A, Minowa I, Hosaka G, Hayakawa S, Kondo M, Ichiki S, Kaneko Y. Applicability of Distributed Ledger Technology to Capital Market Infrastructure. JPX Working Paper, Japan Exchange Group, 2016.
    [4] Lamport L, Shostak RE, Pease MC. The Byzantine generals problem. ACM Trans. on Programming Languages and Systems (TOPLAS), 1982,4(3):382-401.
    [5] Castro M, Liskov B. Practical Byzantine fault tolerance. In:Proc. of the OSDI, Vol.99.1999.173-186.
    [6] Abd-El-MalekM, Ganger GR, Goodson GR, Reiter MK, Wylie JJ. Fault-scalable Byzantine fault-tolerant services. ACM SIGOPS Operating Systems Review, 2005,39(5):59-74.
    [7] Cowling J, Myers D, Liskov B, Rodrigues R, Shrira L. HQ replication:A hybrid quorum protocol for Byzantine fault tolerance. In:Proc. of the 7th Symp. on Operating Systems Design and Implementation. USENIX Association, 2006.177-190.
    [8] Kotla R, Dahlin M. High throughput Byzantine fault tolerance. In:Proc. of the 2004 Int'l Conf. on Dependable Systems and Networks. IEEE Computer Society, 2004.575.
    [9] Kotla R, Alvisi L, Dahlin M, Clement A, Wong E. Zyzzyva:Speculative byzantine fault tolerance. ACM SIGOPS Operating Systems Review, 2007,41(6):45-58.
    [10] Clement A, Wong EL, Alvisi L, Dahlin M, Marchetti M. Making Byzantine fault tolerant systems tolerate Byzantine faults. In:Proc. of the NSDI, Vol.9.2009.153-168.
    [11] Gentry C, Boneh D. A Fully Homomorphic Encryption Scheme. Stanford:Stanford University, 2009.
    [12] Gentry C. Computing arbitrary functions of encrypted data. Communications of the ACM, 2010,53(3):97-105.
    [13] Van Dijk M, Gentry C, Halevi S, Vaikuntanathan V. Fully homomorphic encryption over the integers. In:Proc. of the Annual Int'l Conf. on the Theory and Applications of Cryptographic Techniques. Berlin, Heidelberg:Springer-Verlag, 2010.24-43.
    [14] Noether S, Mackenzie A. A note on chain reactions in traceability in cryptonote 2.0. Research Bulletin MRL-0001. Monero Research Lab., 2014.1-8.
    [15] Bitansky N, Canetti R, Chiesa A, Tromer E. From extractable collision resistance to succinct non-interactive arguments of knowledge, and back again. In:Proc. of the 3rd Innovations in Theoretical Computer Science Conf. ACM Press, 2012.326-349.
    [16] Koblitz N. Elliptic curve cryptosystems. Mathematics of Computation, 1987,48(177):203-209.
    [17] Miller VS. Use of elliptic curves in cryptography. In:Proc. of the Conf. on the Theory and Application of Cryptographic Techniques. Berlin, Heidelberg:Springer-Verlag, 1985.417-426.
    [18] Zhou P, Du Y, Li B. White Paper on China Blockchain Technology and Application Development (2016). Beijing:Ministry of Industry and Information Technology, 2016(in Chinese).
    [19] State Cryptography Administration. Public Key Cryptographic Algorithm SM2 Based on Elliptic Curves. Beijing:State Cryptography Administration, 2010(in Chinese).
    [20] Silverman JH. The Arithmetic of Elliptic Curves. Springer Science & Business Media, 2009.
    [21] Nvidia. CUDA C Programming Guide. Nvidia Corporation, 2015:Section 5.4.1.
    [22] Fischer W, Giraud C, Knudsen EW, Seifert JP. Parallel scalar multiplication on general elliptic curves over Fp hedged against non- differential side-channel attacks. In:Proc. of the IACR Cryptology ePrint Archive 2002.2002.
    附中文参考文献:
    [18] 周平,杜宇,李斌.中国区块链技术和应用发展白皮书(2016).北京:工业和信息化部,2016.
    [19] 国家密码管理局.SM2椭圆曲线公钥密码算法.北京:国家密码管理局,2010.
    相似文献
    引证文献
引用本文

朱立,俞欢,詹士潇,邱炜伟,李启雷.高性能联盟区块链技术研究.软件学报,2019,30(6):1577-1593

复制
分享
文章指标
  • 点击次数:5267
  • 下载次数: 9394
  • HTML阅读次数: 3412
  • 引用次数: 0
历史
  • 收稿日期:2018-04-11
  • 最后修改日期:2018-10-12
  • 在线发布日期: 2019-03-28
文章二维码
您是第19728040位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号