基于条件随机场的深度相关滤波目标跟踪算法
作者:
作者简介:

黄树成(1969-),男,江苏徐州人,博士,教授,主要研究领域为机器学习,多媒体数据分析;徐常胜(1969-),男,博士,研究员,博士生导师,CCF杰出会员,主要研究领域为多媒体分析与检索,计算机视觉,模式识别;张瑜(1991-),女,助理工程师,主要研究领域为计算机视觉,多媒体数据分析,机器学习;王直(1964-),男,教授,主要研究领域为工业控制,导航控制;张天柱(1982-),男,博士,副研究员,CCF专业会员,主要研究领域为模式识别,计算机视觉,多媒体计算,机器学习.

通讯作者:

徐常胜,E-mail:csxu@nlpr.ia.ac.cn

基金项目:

国家自然科学基金(61772244)


Improved Deep Correlation Filters via Conditional Random Field
Author:
Fund Project:

National Natural Science Foundation of China (61772244)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [37]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    目标跟踪是计算机视觉领域众多应用中的重要组成部分之一.在实际环境中目标经常会因为形变、快速运动、背景杂波和遮挡而引起明显的表观变化,使得该问题具有一定的挑战性,因此如何对跟踪问题进行建模变得至关重要.基于深度卷积神经网络(convolutional neural network,简称CNN)的判别式相关滤波(discriminative correlation filter,简称DCF)跟踪方法自提出以来,就以兼顾准确率和速度的优势,吸引了大量研究者的关注,该方法通过相关滤波器获取目标候选区域的响应图,作为衡量目标位置的标准,理想响应图的最大值应该对应目标所在的位置.在此基础上,考虑到响应图中数值的连续性,对应的连续条件随机场(conditional random field,简称CRF)模型中极大似然对数存在闭式解,因此对响应值的求解可以定义为一个连续CRF的学习问题.基于以上研究,提出了一种基于条件随机场的鲁棒性深度相关滤波目标跟踪算法,将DCF与CRF结合,设计了一个端到端的深度卷积神经网络,嵌入了CRF中的一元状态函数与二元转移函数,用来获取图片的响应.通过结合一元状态函数中的初始响应和二元转移函数中的相似度矩阵,优化后的算法可以得到一个更平滑、更精确的响应图,从而提高跟踪的鲁棒性.最后,在OTB-2013和OTB-2015这两个数据集上进行了大量的测试,并且与近年来9种在国际上具有代表性的相关算法进行对比分析,结果显示,在OTB-2013中,所提出的算法比基准方法的跟踪成功率高3%,跟踪精度高6.1%;在OTB-2015中,所提出的算法比基准方法的跟踪成功率高3.5%,跟踪精度高4.8%.

    Abstract:

    Object tracking is one of the most important tasks in numerous applications of computer vision. It is challenging as target objects often undergo significant appearance changes caused by deformation, abrupt motion, background clutter and occlusion. Therefore, it is important to build a robust object appearance model for visual tracking. Discriminative correlation filters (DCF) with deep convolutional features have achieved favorable performance in recent tracking benchmarks. The object in each frame can be detected by corresponding response map, which means the desired response map should get a highest value at the location of the object. In this scenario, considering the continuous characteristics of the response values, it can be naturally formulated as a continuous conditional random field (CRF) learning problem. Moreover, the integral of the partition function can be calculated in a closed form so that the log-likelihood maximization can be exactly solved. Therefore, here a conditional random field based robust object tracking algorithm is proposed to improve deep correlation filters, and an end-to-end deep convolutional neural network is designed for estimating response maps from input images by integrating the unary and pairwise potentials of continuous CRF into a tracking model. With the combination between the initial response map and similarity matrix which are obtained through the unary and pairwise potentials respectively, a smoother and more accurate response map can be achieved, which improves the tracking robustness. The proposed approach against 9 state-of-the-art trackers on OTB-2013 and OTB-2015 benchmarks are evaluated. The extensive experiments demonstrate that the proposed algorithm is 3% and 3.5% higher than the baseline methods in success plot, and is 6.1% and 4.8% higher than the baseline ones in precision plot on OTB-2013 and OTB-2015 benchmarks respectively.

    参考文献
    [1] Henriques JF, Rui C, Martins P, et al. High-speed tracking with kernelized correlation filters. IEEE Trans. on Pattern Analysis & Machine Intelligence, 2014,37(3):583-596.
    [2] Li Y, Zhu J. A scale adaptive kernel correlation filter tracker with feature integration. In:Proc. of the European Conf. on Computer Vision Workshops. 2014,8926:254-265.
    [3] Ma C, Yang X, Zhang C, et al. Long-term correlation tracking. In:Proc. of the Computer Vision and Pattern Recognition. 2015. 5388-5396.
    [4] Hong Z, Chen Z, Wang C, Mei X, Prokhorov D, Tao D. MUlti-store tracker (MUSTer):A cognitive psychology inspired approach to object tracking. In:Proc. of the 2015 IEEE Conf. on Computer Vision and Pattern Recognition (CVPR). 2015. 749-758.[doi:10. 1109/CVPR.2015.7298675]
    [5] Mueller M, Smith N, Ghanem B. Context-aware correlation filter tracking. In:Proc. of the 2017 IEEE Conf. on Computer Vision and Pattern Recognition (CVPR). 2017. 1387-1395.[doi:10.1109/CVPR.2017.152]
    [6] Danelljan M, Häger G, Khan FS, Felsberg M. Convolutional features for correlation filter based visual tracking. In:Proc. of the IEEE Int'l Conf. on Computer Vision Workshop. IEEE Computer Society, 2015. 621-629.
    [7] Ma C, Huang JB, Yang X, Yang MH. Hierarchical convolutional features for visual tracking. In:Proc. of the IEEE Int'l Conf. on Computer Vision. 2015. 3074-3082.
    [8] Bertinetto L, Valmadre J, Henriques JF, Vedaldi A, Torr PHS. Fully-convolutional siamese networks for object tracking. In:Proc. of the European Conf. on Computer Vision. 2016. 850-865.
    [9] Valmadre J, Bertinetto L, Henriques J, Vedaldi A, Torr PHS. End-to-end representation learning for correlation filter based tracking. In:Proc. of the 2017 IEEE Conf. on Computer Vision and Pattern Recognition (CVPR). 2017. 5000-5008.
    [10] Wang Q, Gao J, Xing J, Zhang M, Hu W. DCFNet:Discriminant correlation filters network for visual tracking. 2017. https://www.researchgate.net/publication/316098189_DCFNet_Discriminant_Correlation_Filters_Network_for_Visual_Tracking
    [11] Wu Y, Lim J, Yang MH. Object tracking benchmark. IEEE Trans. on Pattern Analysis & Machine Intelligence, 2015,37(9):1834-1848.
    [12] Bolme DS, Beveridge JR, Draper BA, Lui YM. Visual object tracking using adaptive correlation filters. In:Proc. of the 23rd IEEE Conf. on Computer Vision and Pattern Recognition, CVPR 2010. 2010. 2544-2550.
    [13] Henriques JF, Rui C, Martins P, et al. Exploiting the circulant structure of tracking-by-detection with kernels. In:Proc. of the European Conf. on Computer Vision. 2012. 702-715.
    [14] Danelljan M, Hager G, Khan FS, Felsberg M. Discriminative scale space tracking. IEEE Trans. on Pattern Analysis & Machine Intelligence, 2016,39(8):1561-1575.
    [15] Bertinetto L, Valmadre J, Golodetz S, Miksik O, Torr PHS. Staple:Complementary learners for real-time tracking. In:Proc. of the Int'l Conf. on Computer Vision and Pattern Recognition (CVPR). 2016. 1401-1409.
    [16] Danelljan M, Khan FS, Felsberg M, Weijer J. Adaptive color attributes for real-time visual tracking. In:Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition. 2014. 1090-1097.
    [17] Danelljan M, Häger G, Khan FS, Felsberg M. Learning spatially regularized correlation filters for visual tracking. In:Proc. of the IEEE Int'l Conf. on Computer Vision. 2015. 4310-4318.
    [18] Krizhevsky A, Sutskever I, Hinton GE. ImageNet classification with deep convolutional neural networks. In:Proc. of the Int'l Conf. on Neural Information Processing Systems. Curran Associates Inc., 2012. 1097-1105.
    [19] He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In:Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition. 2016. 770-778.
    [20] Ren S, Girshick R, Girshick R, Sun J. Faster R-CNN:Towards real-time object detection with region proposal networks. IEEE Trans. on Pattern Analysis & Machine Intelligence, 2017,39(6):1137-1149.
    [21] Sun W, Wang R. Fully convolutional networks for semantic segmentation of very high resolution remotely sensed images combined with DSM. IEEE Geoscience & Remote Sensing Letters, 2018,PP(99):1-5.
    [22] Qi Y, Zhang S, Qin L, Lim J, Yang MH. Hedged deep tracking. In:Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition. 2016. 4303-4311.
    [23] Lafferty J, McCallum A, Pereira F. Conditional random fields:Probabilistic models for segmenting and labeling sequence data. In:Proc. of the 18th Int'l Conf. on Machine Learning. 2001. 282-289.
    [24] Qin T, Liu TY, Zhang XD, Wang DS, Li H. Global ranking using continuous conditional random fields. In:Proc. of the Conf. on Neural Information Processing Systems. Vancouver, 2008. 1281-1288.
    [25] Ristovski K, Radosavljevic V, Vucetic S, Obradovic Z. Continuous conditional random fields for efficient regression in large fully connected graphs. In:Proc. of the AAAI Conf. on Artificial Intelligence. 2013. 840-846.
    [26] Radosavljevic V, Vucetic S, Obradovic Z. Continuous conditional random fields for regression in remote sensing. In:Proc. of the European Conf. on Artificial Intelligence. 2010. 809-814.
    [27] Liu F, Shen C, Lin G. Deep convolutional neural fields for depth estimation from a single image. In:Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition. 2015. 5162-5170.
    [28] Li H. The Method of Statistical Learning. Beijing:Tsinghua University Press, 2012(in Chinese).
    [29] Wang X, Shrivastava A, Gupta A. A-fast-RCNN:Hard positive generation via adversary for object detection. In:Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition. 2017. 3039-3048.
    [30] Danelljan M, Hager G, Khan FS, Felsberg M. Accurate scale estimation for robust visual tracking. In:Proc. of the British Machine Vision Conf. 2014.
    [31] Boeddeker C, Hanebrink P, Drude L, Heymann J, Haeb-Umbach R. On the computation of complex-valued gradients with application to statistically optimum beamforming. Technical Report, Department of Communications Engineering, Institute for Electrical Engineering and Information Technology, Paderborn University, 2017.
    [32] Hong S, You T, Kwak S, Han B. Online tracking by learning discriminative saliency map with convolutional neural network. In:Proc. of the Int'l Conf. on Machine Learning. 2015. 597-606.
    [33] Li A, Lin M, Wu Y, Yang MH, Yan S. NUS-PRO:A new visual tracking challenge. IEEE Trans. on Pattern Analysis & Machine Intelligence, 2016,38(2):335-349.
    [34] Liang P, Blasch E, Ling H. Encoding color information for visual tracking:Algorithms and benchmark. IEEE Trans. on Image Processing, 2015,24(12):5630-5644.
    [35] Mueller M, Smith N, Ghanem B. A benchmark and simulator for UAV tracking. Far East Journal of Mathematical Sciences, 2013, 2(2):445-461.
    附中文参考文献:
    [28] 李航.统计学习方法.北京:清华大学出版社,2012.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

黄树成,张瑜,张天柱,徐常胜,王直.基于条件随机场的深度相关滤波目标跟踪算法.软件学报,2019,30(4):927-940

复制
分享
文章指标
  • 点击次数:3347
  • 下载次数: 7720
  • HTML阅读次数: 2776
  • 引用次数: 0
历史
  • 收稿日期:2018-04-15
  • 最后修改日期:2018-06-13
  • 在线发布日期: 2019-04-01
文章二维码
您是第19728008位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号