基于用户轨迹数据的移动推荐系统研究
CSTR:
作者:
作者单位:

作者简介:

孟祥武(1966-),男,山东招远人,博士,教授,博士生导师,CCF高级会员,主要研究领域为网络服务,用户需求,推荐服务;李瑞昌(1982-),男,博士生,CCF专业会员,主要研究领域为社会化网络分析,数据挖掘,推荐服务;张玉洁(1969-),女,副教授,主要研究领域为网络服务,用户需求,推荐服务;张玉洁(1969-),女,副教授,主要研究领域为网络服务,用户需求,推荐服务

通讯作者:

孟祥武,E-mail:mengxw@bupt.edu.cn

中图分类号:

基金项目:

北京市教育委员会共建项目专项


Survey on Mobile Recommender Systems Based on User Trajectory Data
Author:
Affiliation:

Fund Project:

The Mutual Project of Beijing Municipal Education Commission, China

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    近年来,随着移动智能设备的普及,移动社交网络方兴未艾,用户习惯和朋友分享自己的精彩经历,因此产生了大规模具有时空属性的用户轨迹数据.从狭义的角度来看,轨迹数据是指连续采样的GPS数据.从广义的角度来看,在时空域存在连续性的序列,都可以称作轨迹.例如:在社交网络上的用户签到序列就可以认为是粗粒度的轨迹数据.广义轨迹数据具有时空异构性、连续与离散并存、时空项目的层次性不明显和分类不明确等特点,但是相比于GPS轨迹数据,广义轨迹数据来源广泛,蕴含丰富的信息,这给传统的移动推荐系统带来了巨大的机遇.与此同时,广义轨迹数据规模大、结构丰富,这也给传统的移动推荐系统带来了巨大的挑战.如何利用广义用户轨迹数据来提升移动推荐系统的性能,已成为学术界和产业界共同关注的重要课题.以轨迹数据特征作为切入点,对近年来基于广义用户轨迹数据的移动推荐系统的主要模型方法和推荐评价指标进行了系统综述,阐述了与传统移动推荐系统的联系和区别.最后,对基于广义用户轨迹数据的移动推荐系统有待深入研究的难点和发展趋势进行了分析和展望.

    Abstract:

    In recent years, with the popularity of mobile smart devices, location based social networks are on the rise. Users trend to share their wonderful experiences with their friends, resulting in producing large-scale user trajectory with temporal and spatial attributes. From a narrow perspective, the trajectory data refers to continuously sampled GPS data only. From a broad perspective, it can be called trajectory data as long as the data has sequential characteristic. Thus, the check-ins, acquired from a social network, can also be considered coarse-grained trajectory data. The generalized trajectory data has the characteristics of spatiotemporal heterogeneity, continuous and discrete coexistence, and containing temporal-spatial items with unclear hierarchy and classification. However, compared to the GPS trajectory data, the generalized trajectory data source is extensive and contains rich information, which brings great opportunity to the traditional mobile recommender system. At the same time, the generalized trajectory data has big scale and diversity structure, which also presents great challenges to the system. It has become an important issue how to use the generalized trajectory data to improve the performance of mobile recommender system in academia and industry. This paper takes the trajectory data characteristics as the focal point to analyze and survey main recommender methods and evaluation metrics based on generalized user trajectory data. Further, it expounds the relationships and differences between traditional mobile recommender systems and the mobile recommender systems based on user trajectory data. Finally, the paper discusses the difficulty and development trend of mobile recommender systems based on generalized user trajectory.

    参考文献
    相似文献
    引证文献
引用本文

孟祥武,李瑞昌,张玉洁,纪威宇.基于用户轨迹数据的移动推荐系统研究.软件学报,2018,29(10):3111-3133

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2017-05-15
  • 最后修改日期:2018-03-27
  • 录用日期:
  • 在线发布日期: 2018-06-08
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号