描述逻辑ALC中关于伪子概念极小改变的R-演算
作者:
作者简介:

王雨晖(1989-),男,陕西西安人,博士,主要研究领域为人工智能-信念修正,R-演算,大规模知识处理;眭跃飞(1963-),男,博士,教授,博士生导师,主要研究领域为人工智能-知识表示,R-演算,多值逻辑,数理逻辑-递归论.

通讯作者:

王雨晖,E-mail:yhwang_ict@qq.com

中图分类号:

TP18

基金项目:

国家重点基础研究发展计划(973)(2005CB321901);软件开发环境国家重点实验室开放课题(SKLSDE-2010KF-06)


R-calculus for Pseudo-subconcept-ninimal Change in Description Logic ALC
Author:
  • WANG Yu-Hui

    WANG Yu-Hui

    Key Laboratory of Intelligent Information Processing, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China;School of Computer and Control Engineering, University of Chinese Academy of Sciences, Beijing 100049, China;Information Technology Center, China Reinsurance(Group) Corporation, Beijing 100033, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • SUI Yue-Fei

    SUI Yue-Fei

    Key Laboratory of Intelligent Information Processing, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China;School of Computer and Control Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
    在期刊界中查找
    在百度中查找
    在本站中查找
Fund Project:

National Program on Key Basic Research Project (973)(2005CB321901); Open Fund of the State Key Laboratory of Software Development Environment (SKLSDE-2010KF-06)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [11]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    AGM公设是用于信念修正的(被一个单一信念修正),而DP公设是用于迭代修正的(被一个有限的信念序列修正).李未给出了对于R-构型(configuration)|Γ的R-演算,其中,是一个原子公式或原子公式否定的集合,而Γ是一个有限的公式集合.为了在修正过程中能够保留断言中尽可能多的信息,将考虑一种新的极小改变的定义:伪子概念极小改变(≤-极小改变),其中,≤是一种伪子概念的关系;之后,在此基础上给出一种新的R-演算TDL,它是关于≤-极小改变可靠和完备的,使得|Γ在TDL中可以被约减为一个理论Θ(记作├TDL |ΓΘ)当且仅当ΘΓ关于的一个≤-极小改变.

    Abstract:

    The AGM postulates are for the belief revision (revision by a single belief), and the DP postulates are for the iterated revision (revision by a finite sequence of beliefs). Li gave an R-calculus for R-configurations |Γ, where is a set of atomic formulas or the negations of atomic formulas, and Γ is a finite set of formulas. With an idea to preserve as much as possible information of statements to be revised, another definition of the minimal change is considered:pseudo-subconcept-minimal (≤-minimal) change, where ≤ is the pseudo-subconcept relation, and then give a new R-calculus TDL which is sound and complete with respect to ≤-minimal change such that |Γ is reduced to a theory Θ in TDL (denoted by ├TDL |Γ,Θ) if and only if Θ is a ≤-minimal change of Γ by .

    参考文献
    [1] Doyle J. A truth maintenance system. Artificial Intelligence, 1979,12:231-272.
    [2] Alchourrón CE, Gärdenfors P, Makinson D. On the logic of theory change:Partial meet contraction and revision functions. The Journal of Symbolic Logic, 1985,50(2):510-530.
    [3] Hansson SO. A textbook of belief dynamics:Theory change and database updating. History & Philosophy of Logic, 1999,21(3):242-243.
    [4] Hansson SO. Ten philosophical problems in belief revision. Journal of Logic and Computation, 2003,13:37-49.
    [5] Li W. R-calculus:An inference system for belief revision. The Computer Journal, 2007,50(4):378-390.
    [6] Takeuti G. Proof theory. In:Barwise J, ed. Handbook of Mathematical Logic. North Holland, 1982.
    [7] Wang YH, Cao CG, Sui YF. R-calculus for the primitive statements in description logic ALC. In:Proc. of the Int'l Conf. on Knowledge Science. Cham:Engineering and Management Springer, 2017. 106-116.
    [8] Katsuno H, Mendelzon AO. Propositional knowledge base revision and minimal change. Artificial Intelligence, 1991,52:263-294.
    [9] Rott H, Williams MA, eds. Frontiers in Belief Revision. Springer Netherlands, 2001. 451.
    [10] Satoh K. Nonmonotonic reasoning by minimal belief revision. In:Proc. of the Int'l Conf. on 5th Generation Computer Systems. Tokyo, 1988. 455-462.
    [11] Baader F, Calvanese D, McGuinness DL, Nardi D, Patel-Schneider PF. The Description Logic Handbook:Theory, Implementation, Applications. Cambridge:Cambridge University Press, 2003.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

王雨晖,眭跃飞.描述逻辑ALC中关于伪子概念极小改变的R-演算.软件学报,2019,30(12):3683-3693

复制
分享
文章指标
  • 点击次数:1367
  • 下载次数: 3419
  • HTML阅读次数: 1626
  • 引用次数: 0
历史
  • 收稿日期:2017-12-26
  • 最后修改日期:2018-03-17
  • 在线发布日期: 2019-12-05
文章二维码
您是第19780856位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号