时空数据语义理解:技术与应用
CSTR:
作者:
作者单位:

作者简介:

姚迪(1990-),男,河南许昌人,博士,CCF学生会员,主要研究领域为数据挖掘,机器学习;陈越新(1983-),男,博士,工程师,主要研究领域为计算机网络,大数据应用技术;张超(1988-),男,博士,助理研究员,主要研究领域为data mining,machine learning;毕经平(1974-),女,博士,研究员,博士生导师,CCF高级会员,主要研究领域为计算机网络,数据处理;黄建辉(1977-),男,博士,高级工程师,主要研究领域为移动机会网络,大数据应用.

通讯作者:

毕经平,E-mail:bjp@ict.ac.cn

中图分类号:

基金项目:

国家自然科学基金(61472403,61303243,61702470)


Semantic Understanding of Spatio-Temporal Data: Technology & Application
Author:
Affiliation:

Fund Project:

National Natural Science Foundation of China (61472403, 61303243, 61702470)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    随着移动互联网的发展与手持智能终端的普及,海量带有用户时空属性的数据被生成.理解这些数据表达的语义信息对推测用户需求,分析用户偏好,进而提供精准时空推荐和预测服务具有重要作用.因此,近些年来,时空数据语义理解正成为时空数据挖掘领域的研究热点.从技术和应用两个层面,对近些年来国内外研究者在该领域的研究成果进行了系统的归类和总结.技术层面上,依据语义理解的不同任务,提出了时空数据语义理解的研究框架;并依次从地理位置语义理解、用户行为语义理解、热点事件语义理解3个主要任务,归纳了时空数据语义理解所包含的相关研究成果和关键技术.应用层面上,分别总结了时空数据语义理解在时空推荐和时空预测中的应用.最后,从数据质量、算法模型和计算模式3个方面,归纳了时空数据语义理解面临的主要挑战以及未来的研究方向.

    Abstract:

    With the development of mobile internet and widespread use of mobile phones, a large amount of data that contains user' time and space attributes has been generated and collected. Investigating the semantic information of the collective data plays an important role in understanding the needs, analyzing preference of the user, even recommending and predicting space and time. Recently, many researchers all over the world have turned their focus on understanding the spatio-temporal semantic data. This paper summarizes the related works regarding the spatio-temporal semantic data. Firstly, according to the tasks, the basic concepts and research frameworks are introduced; then, the works of location semantic understanding, user behavior semantic understanding and event semantic understanding are summarized. Additionally, the application scenarios of recommending and predicting space and time field are described. Finally, the future research directions of spatio-temporal data semantic understanding are discussed.

    参考文献
    相似文献
    引证文献
引用本文

姚迪,张超,黄建辉,陈越新,毕经平.时空数据语义理解:技术与应用.软件学报,2018,29(7):2018-2045

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2017-06-13
  • 最后修改日期:2018-03-16
  • 录用日期:
  • 在线发布日期: 2018-04-16
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号