引入序列信息的残基相互作用网络比对算法
作者:
作者简介:

陶斯涵(1993-),女,湖南株洲人,硕士,主要研究领域为计算智能,生物信息学;丁彦蕊(1976-),女,博士,教授,CCF专业会员,主要研究领域为计算智能,生物信息学.

通讯作者:

丁彦蕊,E-mail:yr_ding@jiangnan.edu.cn

中图分类号:

TP391

基金项目:

国家自然科学基金(21541006);留学回国人员科研启动基金


Algorithm Introduced Sequence Information for Residue Interaction Network Alignment
Author:
Fund Project:

National Natural Science Foundation of China (21541006); Scientific Research Start-up Fund for Returned Overseas Chinese Scholars, Ministry of Education

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [35]
  • |
  • 相似文献
  • | | |
  • 文章评论
    摘要:

    残基相互作用网络比对,对于研究蛋白质结构与功能的关系具有重要意义.在基于网络拓扑信息进行网络比对的MAGNA算法基础上,将蛋白质的序列信息(即残基匹配度)引入到其优化函数中,确定拓扑信息和序列信息对比对的影响程度,提出适合于残基相互作用网络比对的SI-MAGNA算法.实验结果表明,SI-MAGNA算法比现有的基于网络拓扑信息的经典比对方法(GRAAL、MI-GRAAL、MAGNA和CytoGEDEVO)具有更高的边正确性(edge correctness,简称EC).最后,使用SI-MAGNA算法对来自不同耐热温度的生物的同源蛋白质进行网络比对和分析,探索蛋白质结构对其热稳定性的影响.

    Abstract:

    Residue interaction network alignment plays an important role in the research of the relations between protein structure and its function. In this study, protein sequence information (residue matching degree) is introduced to the optimization function of MAGNA algorithm, which carries out network alignment through network topological information, and studied the influence of topological information and sequence information on the residue interaction network alignment. Then, an SI-MAGNA algorithm suitable for residue interaction network alignment is proposed. The experiment showed that SI-MAGNA algorithm has higher accuracy EC (edge correctness) compared with the classical alignment methods (GRAAL, MI-GRAAL, MAGNA, and CytoGEDEVO) based on network topological information. At last, using SI-MAGNA algorithm to align and analyze the residue interaction networks of biological homologous proteins from different heat-resistance temperatures, the influence of protein structure on the thermal stability is studied.

    参考文献
    [1] Meng L, Striegel A, Milenkovic T. Local versus global biological network alignment. Bioinformatics, 2016,32(20):3155-3164.
    [2] Chang S, Jiao X, Wang MH, Tian XH. Progress in amino acid networks of proteins. Progress in Modern Biomedicine, 2011,11(1):190-193(in Chinese with English abstract).
    [3] Kelley BP, et al. PathBLAST:A tool for alignment of protein interaction networks. Nucleic Acids Research, 2004,32(2):83-88.
    [4] Koyuturk M, Kim Y, Topkara U, Subramaniam S, Szpankowski W, Grama A. Pairwise alignment of protein interaction networks. Journal of Computational Biology, 2006,13(2):182-199.
    [5] Mina M, Guzzi PH. AlignMCL:Comparative analysis of protein interaction networks through Markov clustering. In:Proc. of the 2012 IEEE Int'l Conf. on Bioinformatics and Biomedicine Workshops (BIBMW). 2012.174-181.
    [6] Singh R, Xu JB, Berger B. Global alignment of multiple protein interaction networks with application to functional orthology detection. Proc. of the National Academy of Science, 2008,105(35):12763-12768.
    [7] Oleksii K, Milenkovic T, Vesna M, Wayne H, Natasa P. Topological network alignment uncovers biological function and phylogeny. Journal of the Royal Society Interface, 2010,7(50):1341-1354.
    [8] Kuchaiev O, Przulj N. Integrative network alignment reveals large regions of global network similarity in yeast and human. Bioinformatics, 2011,27(10):1390-1396.
    [9] Hashemifar S, Xu J. HubAlign:An accurate and efficient method for global alignment of protein-protein interaction networks. Bioinformatics, 2014,30(17):i438-i444.
    [10] Saraph V, Milenkovic T. MAGNA:Maximizing accuracy in global network alignment. Bioinformatics, 2014,30(20):2931-2940.
    [11] Hashemifar S, et al. ModuleAlign:Module-based global alignment of protein-protein interaction networks. Bioinformatics, 2016, 32(17):i658-i664.
    [12] Sun X, Lu ZH, Xie JM. Bioinformatics Foundation. Beijing:Tsinghua University Press, 2005(in Chinese).
    [13] Malek M, Ibragimov R, Albrecht M, Baumbach J. CytoGEDEVO-Global alignment of biological networks with cytoscape. Bioinformatics, 2016,32(8):1259-1261.
    [14] Greene LH, Higman VA. Uncovering network systems within protein structures. Molecular Biology Reports, 2003,334(4):781-791.
    [15] Bode C, Kovács IA, Szalay MS, Palotai R, Korcsmáros T, Csermely P. Network analysis of protein dynamics. FEBS Letters, 2007, 581(15):2776-2782.
    [16] Estrada E. Universality in protein residue networks. Biophys, 2010,98(5):890-900.
    [17] Schlicker A, Domingues FS, Rahnenführer J, et al. A new measure for functional similarity of gene products based on gene ontology. BMC Bioinformatics, 2006,7:Article No.302.
    [18] Ibragimov R, et al. GEDEVO:An evolutionary graph edit distance algorithm for biological network alignment. In:Proc. of the German Conf. on Bioinformatics 2013(GCB 2013). Gottingen:Schloss Dagstuhl-Leibniz-Zentrum Fuer Informatik, 2013.68-79.
    [19] Faisal FE, Zhao H, Milenkovic T. Global network alignment in the context of aging. IEEE/ACM Trans. on Computational Biology and Bioinformatics, 2015,12(1):40-52.
    [20] Yan LC, Su JG, Chen WZ, Wang CX. Study on the characters of different types of amino-acid networks and their relations with protein folding. Progress in Biochemistry and Biophysics, 2010,37(7):762-768(in Chinese with English abstract).
    [21] Wang XQ, Ding YR, Mu ZL, Cai YJ. Research on the relationship between iron superoxide dismutase amino acid networks and thermostability. Acta Biophysica Sinica, 2014,30(2):146-156(in Chinese with English abstract).
    [22] Tan ZB, Li JF, Wu MC, Yin X, Hu D, Dong YH. Research advance on engineering thermostability of lipase. Journal of Food Science and Biotechnology, 2014,33(7):673-681(in Chinese with English abstract).
    [23] Sangeeta K, Debjani R. Comparative structural studies of psychrophilic and mesophilic protein homologues by molecular dynamics simulation. Journal of Molecular Graphics and Modelling, 2009,27(8):871-880.
    [24] Guo XL, Gao L, Chen X. Models and algorithms for alignment of biological networks. Ruan Jian Xue Bao/Journal of Software, 2010,21(9):2089-2106(in Chinese with English abstract). http://www.jos.org.cn/1000-9825/3860.htm[doi:10.3724/SP.J.1001.2010.03860]
    [25] Yang JL, Li J, Dong LH, Grunewald S. A heuristic algorithm to align protein interaction networks. Journal of Biomathematics, 2011,26(3):569-575(in Chinese with English abstract).
    [26] Tao SH, Ding YR. Research on the relationship between thermostability and structure of xylanase based on residue interaction network alignment. Chinese Journal of Biochemistry and Molecular Biology, 2018,34(7):760-768(in Chinese with English abstract).
    附中文参考文献:
    [2] 常珊,焦雄,王美华,田绪红.蛋白质氨基酸网络研究进展.现代生物医学进展,2011,11(1):190-193.
    [12] 孙啸,陆祖宏,谢建明.生物信息学基础.北京:清华大学出版社,2005.
    [20] 严立成,苏计国,陈慰祖,王存新.不同类型氨基酸网络参量与蛋白质折叠的关系.生物化学与生物物理进展,2010,37(7):762-768.
    [21] 王雪芹,丁彦蕊,牟兆琳,蔡宇杰.超氧化物歧化酶氨基酸网络与耐热性的关系研究.生物物理学报,2014,30(2):146-156.
    [22] 谭中标,李剑芳,邬敏辰,殷欣,胡蝶,董运海.脂肪酶热稳定性改造研究进展.食品与生物技术学报,2014,33(7):673-681.
    [24] 郭杏莉,高琳,陈新.生物网络比对的模型与算法.软件学报,2010,21(9):2089-2106. http://www.jos.org.cn/1000-9825/3860.htm[doi:10.3724/SP.J.1001.2010.03860]
    [25] 杨家亮,李军,董骝焕,Grunewald S.一个生物网络比对的启发式算法.生物数学学报,2011,26(3):569-575.
    [26] 陶斯涵,丁彦蕊.基于残基相互作用网络比对的木聚糖酶热稳定性研究.中国生物化学与分子生物学报,2018,34(7):760-768.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

陶斯涵,丁彦蕊.引入序列信息的残基相互作用网络比对算法.软件学报,2019,30(11):3413-3426

复制
分享
文章指标
  • 点击次数:1582
  • 下载次数: 3881
  • HTML阅读次数: 1952
  • 引用次数: 0
历史
  • 收稿日期:2017-11-27
  • 最后修改日期:2018-01-03
  • 在线发布日期: 2019-11-06
文章二维码
您是第19791776位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号