基于异构社交网络信息和内容信息的事件推荐
作者:
作者简介:

尚燕敏(1982-),女,河北保定人,博士,助理研究员,主要研究领域为用户画像;刘燕兵(1981-),男,博士,副研究员,CCF高级会员,主要研究领域为模式串匹配,信息过滤,图数据分析挖掘;曹亚男(1985-),女,博士,副研究员,CCF专业会员,主要研究领域为自然语言处理,用户建模.

中图分类号:

TP311

基金项目:

国家自然科学基金(61602466,61403369);国家重点研发计划(2016YFB0801300)


CHS-BPR: Combining Content-aware and Heterogeneous-aware for Event Recommendation
Author:
Fund Project:

National Natural Science Foundation of China (61602466, 61403369); National Key R&D Program of China (2016YFB0801300)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [20]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    基于事件的社交网络使得事件推荐受到越来越多的关注.不同于其他推荐问题(如电影推荐等),事件推荐具有3类不同信息:用户构成的异构社交网络关系信息(在线社交网络和离线社交网络)、用户/事件的内容信息、用户对事件的隐式反馈信息.如何有效融合这些信息进行事件推荐是该领域学者普遍关注的问题.提出一种新的混合事件推荐方法CHS-BPR,该方法以贝叶斯潜在因子模型为基本框架来处理用户对事件的隐式反馈信息,同时考虑用户/事件的内容信息和用户之间的异构社交网络信息,首次实现了同时使用3种信息来做事件推荐,并以真实数据集验证了所提方法的有效性.

    Abstract:

    The Web has grown into one of the most important channels to communicate social events nowadays. However, the sheer volume of events available in event-based social networks (EBSNs) often undermines the users' ability to choose the events that best fit their interests. Recommender systems appear as a natural solution for this problem. Different from classic recommendation problems (e.g. movies), event recommendation generally faces three complex problems:Heterogeneous social relationships (online and offline) among users, the implicit feedback data and the content-context information of users/events. How to effectively fuse this information for event recommendation is a common concern for scholars in this field. This work presents a Bayesian latent factor model that combines users/items content-context information and heterogeneous social information for event recommendation. Experimental results on several real-world datasets demonstrate the proposed method can efficiently tackle with implicit feedback characteristic for event recommendation.

    参考文献
    [1] Cohen D, Aharon M, Koren Y, Somekh O, Nissim R. Expediting exploration by attribute-to-feature mapping for cold-start recommendations. In:Proc. of the 11th ACM Conf. on Recommender Systems. New York:ACM, 2017. 184-192.
    [2] Pan WK, Chen L. GBPR:Group preference based bayesian personalized ranking for one class collaborative filtering. In:Proc. of the 23rd Int'l Joint Conf. on Artificial Intelligence. Beijing:AAAI Press, 2013. 2691-2697.
    [3] Rendle S, Freudenthaler C, Gantner Z, Schmidt-Thieme L. BPr:Bayesian personalized ranking from implicit feedback. In:Proc. of the Conf. on Uncertainty in Artificial Intelligence. Montreal:Association for Uncertainty in Artificial Intelligence, 2009. 452-461.
    [4] Bao J, Zheng Y, Wilkie D, Mokbel M. Recommendations in location-based social networks:A survey. GeoInformatica, 2015,19(3):525-565.
    [5] Lee DH. Pittcult:Trust-based cultural event recommender. In:Proc. of the 2008 ACM Conf. on Recommender systems. New York:ACM, 2008. 311-314.
    [6] Ma H, Zhou DY, Liu C, et al. Recommender systems with social regularization. In:Proc. of the 11th Int'l Conf. on Data Mining. New York:ACM, 2011. 287-296.
    [7] Qiao Z, Zhang P, Cao YN, Zhou C, Guo L, Fang BX. Combining heterogenous social and geographical information for event recommendation. In:Proc. of the 28th AAAI Conf. on Artificial Intelligence. Québec:AAAI Press, 2014. 145-151.
    [8] Rendle S. Factorization machines with LIBFM. ACM Trans. on Intelligent Systems and Technology, 2012,3(3):57:1-57:22.
    [9] Hong LJ, Doumith AS, Davison BD. Co-factorization machines:Modeling user interests and predicting individual decisions in Twitter. In:Proc. of the 6th ACM Int'l Conf. on Web Search and Data Mining. New York:ACM, 2013. 57-566.
    [10] Guo W, Wu S, Wang L, Tan T. Adaptive pairwise learning for personalized ranking with content and implicit feedback. In:Proc. of the IEEE/WIC/ACM Web Intelligence. Singapore:IEEE, 2015. 369-376.
    [11] Hsieh CK, Yang LQ, Wei HH. Immersive recommendation:News and event recommendations using personal digital traces. In:Proc. of the 25th Int'l World Wide Web Conf. 2016. 51-62.
    [12] Hu YF, Koren Y, Volinsky C. Collaborative filtering for implicit feedback datasets. In:Proc. of the 8th Int'l Conf. on Data Mining. New York:ACM, 2008. 263-272.
    [13] Macedo AQ, Marinho LB, Santos RLT. Context-aware event recommendation in event-based social networks. In:Proc. of the 9th ACM Conf. on Recommender Systems. New York:ACM, 2015. 123-130.
    [14] van den Oord A, Dieleman S, Schrauwen B. Deep content-based music recommendation.In:Proc. of the 26th Int'l Conf. on Neural Information Processing Systems. Curran Associates Inc., 2013,2:2643-2651.
    [15] Hamel P, Lemieux S, Bengio Y, Eck D. Temporal pooling and multiscale learning for automatic annotation and ranking of music audio. In:Proc. of the ISMIR. 2011. 729-734.
    [16] Zuo Y, Zeng J, Gong M, Jiao L. Tag-aware recommender systems based on deep neural networks. Neurocomputing, 2016,204:51-60.
    [17] Hidasi B, Karatzoglou A, Baltrunas L, Tikk D. Session-based recommendations with recurrent neural networks. In:Proc. of the ICLR. Computer Science, 2016.
    [18] Caihua W, Wang J, Liu J, Liu W. Recurrent neural network based recommendation for time heterogeneous feedback. Knowledge-Based Systems, 2016,109:90-103.
    [19] Larochelle H, Murray I. The neural autoregressive distribution estimator. Journal of Machine Learning Research, 2011,15:29-37.
    [20] Salakhutdinov R, Mnih A, Hinton G. Restricted Boltzmann machines for collaborative filtering. In:Proc. of the 24th Int'l Conf. on Machine Learning. New York:ACM, 2007. 791-798.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

尚燕敏,曹亚男,刘燕兵.基于异构社交网络信息和内容信息的事件推荐.软件学报,2020,31(4):1212-1224

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2017-09-01
  • 最后修改日期:2017-11-08
  • 在线发布日期: 2020-04-16
  • 出版日期: 2020-04-06
文章二维码
您是第19920864位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号