基于行为特征的语义工作流修正算法
作者:
作者简介:

孙晋永(1978-),男,山东枣庄人,博士,讲师,CCF专业会员,主要研究领域为业务过程管理,知识表示与推理;钱俊彦(1973-),男,博士,教授,博士生导师,CCF高级会员,主要研究领域为软件工程,模型检测,程序验证;古天龙(1964-),男,博士,教授,博士生导师,主要研究领域为软件工程与形式化方法,知识工程,符号推理;刘华东(1978-),男,博士生,讲师,主要研究领域为知识工程,符号推理;闻立杰(1977-),男,博士,副教授,博士生导师,主要研究领域为业务数据管理,大过程数据,业务过程管理,工作流技术.

通讯作者:

古天龙,E-mail:cctlgu@guet.edu.cn

基金项目:

国家自然科学基金(61572146,U1501252,61562015,61862016);广西自然科学基金(2016GXNSFDA380006,2017GXNSFAA198283);广西高等学校高水平创新团队及卓越学者计划;广西可信软件重点实验室基金(KX201723)


Adaptation Algorithm of Semantic Workflows Based on Behavioral Characteristics
Author:
Fund Project:

National Natural Science Foundation of China (61572146, U1501252, 61562015,61862016); Guangxi Natural Science Foundation (2016GXNSFDA380006, 2017GXNSFAA198283); High Level of Innovation Team of Colleges and Universities in Guangxi and Outstanding Scholars Program; Guangxi Key Laboratory of Trusted Software (KX201723)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [25]
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    工作流修正是工作流重用的重要任务.目前,在基于工作流的可重用片段——stream的语义工作流修正中,当工作流stream库中不存在与检索语义工作流中的工作流stream结构相似的stream时,无法修正检索语义工作流.针对这种情况,提出了一种改进方法——基于stream行为特征的语义工作流修正算法.使用任务紧邻关系集表达stream的行为特征.对于检索语义工作流的每个stream(称为查询stream),使用锚集合数据索引和stream匹配规则过滤工作流stream库得到候选匹配stream集;之后,基于变更请求和stream的行为相似性对候选stream集进行验证,得到需替换的查询stream和最符合变更请求并与它足够行为相似的匹配stream;然后,使用每个匹配stream替换对应需替换的查询stream以逐步修正检索语义工作流中的缺陷;最后得到修正语义工作流.实验结果表明,与现有的基于工作流stream的修正算法相比,该算法得到了整体质量更好的修正语义工作流集,其适应性更好.该修正算法能够为业务过程管理人员进行适应新业务需求的工作流变更提供较好质量的参考语义工作流,对提高业务过程管理中工作流重用的效率和质量有较大的帮助.

    Abstract:

    Workflow adaptation is an important task of workflow reuse. During semantic workflow adaptation based on workflow streams, i.e., the reusable segments of semantic workflows, the absence of workflow streams structurally similar to the streams of the retrieved semantic workflow in the workflow streams repository leads to unachievable workflow adaptation. Focusing on the problem, this paper proposes an improved method, i.e., an adaptation algorithm of semantic workflows based on behavioral characteristics of workflow streams. The set of task adjacency relations is used to express the workflow streams' behavioral characteristics. First, for each stream of the retrieved semantic workflow (called query stream), the data index of the anchor set and stream matching rules are used to filter the workflow stream repository to obtain the matching stream candidates.Then, these stream candidates are verified with the change request and the behavioral similarity metric, to obtain the query streams that need to be substituted and the corresponding matching streams that are most coincident with the change request and behaviorally similar to them. Next, each matching stream is used to substitute the query stream in the retrieved workflow to gradually adapt defects of retrieved workflow. Finally, the adapted semantic workflow is obtained. The experimental results show that the proposed adaptation algorithm achieves the adapted semantic workflow set with higher overall quality and has better adaptability compared with existing adaptation algorithm based on workflow streams. The adaptation algorithm can provide semantic workflows of higher quality for business processes managers for references when adapting workflows to meet new business requirements, and is helpful for the improvement of the efficiency and quality of workflow reuse in business process management (BPM).

    参考文献
    [1] Bergmann R, Gil Y. Similarity assessment and efficient retrieval of semantic workflows. Information Systems, 2014,40(1):115-127.
    [2] Müller G, Bergmann R. Workflow streams:A means for compositional adaptation in process-oriented CBR. In:Proc. of the CaseBased Reasoning Research and Development. Springer Int'l Publishing, 2014. 315-329.
    [3] Mantaras RLD, Mcsherry D, Bridge D, et al. Retrieval, reuse, revision and retention in case-based reasoning. Knowledge Engineering Review, 2005,20(3):215-240.
    [4] Minor M, Bergmann R, Görg S, et al. Towards case-based adaptation of workflows. In:Proc. of the Case-Based Reasoning Research and Development. Berlin, Heidelberg:Springer-Verlag, 2010. 421-435.
    [5] Minor M, Bergmann R, Görg S, et al. Adaptation of cooking instructions following the workflow paradigm. In:Proc. of the ICCBR 2010 Workshop Proc. 2010. 199-208.
    [6] Müller G, Bergmann R. Generalization of workflows in process-oriented case-based reasoning. In:Proc. of the Int'l Flairs Conf. 2015. 391-396.
    [7] Müller G, Bergmann R. Learning and applying adaptation operators in process-oriented case-based reasoning. In:Proc. of the CaseBased Reasoning Research and Development. Springer Int'l Publishing, 2015. 259-274.
    [8] Jin T, Wang JM, Wen LJ. Efficient retrieval of similar workflow models based on behavior. In:Proc. of the Web Technologies and Applications. Berlin:Springer-Verlag, 2012. 677-684.
    [9] Zha HP, Wang JM, Wen LJ, et al. A workflow net similarity measure based on transition adjacency relations. Computers in Industry, 2010,61(5):463-471.
    [10] Bae J, Liu L, Caverlee J, et al. Development of distance measures for process mining, discovery and integration. Int'l Journal of Web Services Research (IJWSR), 2007,4(4):1-17.
    [11] Wang JM, HE TF, Wen LJ, et al. A behavioral similarity measure between labeled Petri nets based on principal transition sequences. In:Proc. of the Move to Meaningful Internet Systems (OTM 2010). Springer-Verlag, 2010. 394-401.
    [12] Dijkman R, Dumas M, Van Dongen B, et al. Similarity of business process models:Metrics and evaluation. Information Systems, 2011,36(2):498-516.
    [13] Kunze M, Weidlich M, Weske M. Behavioral similarity-A proper metric. In:Rinderle-Ma S, Toumani F, Wolf K, eds. Proc of the 9th Int'l Conf. on Business Process Management (BPM 2010). Berlin, Heidelberg:Springer-Verlag, 2011. 166-181.
    [14] Sun JY, Gu TL, Wen LJ, et al. Similarity algorithm for semantic workflows used in process-oriented case-based reasoning. Computer Integrated Manufacturing Systems, 2016,22(2):381-394(in Chinese with English abstract).
    [15] Song JF, Wen LJ, Wang JM. A similarity measure for process models based on task occurrence relations. Journal of Computer Research and Development, 2017,54(4):832-843(in Chinese with English abstract).
    [16] Dufour-Lussier V, Leber F, Lieber J, et al. Automatic case acquisition from texts for process-oriented case-based reasoning. Information Systems, 2014,40(1):153-167.
    [17] Kiepuszewski B, Hofstede AHM, Bussler CJ. On structured workflow modelling. In:Proc. of the Seminal Contributions to Information Systems Engineering. Berlin, Heidelberg:Springer-Verlag, 1999. 241-256.
    [18] Ullmann JR. An algorithm for subgraph isomorphism. Journal of the ACM, 1976,23(1):31-42.
    [19] Bergmann R, Stromer A. MAC/FAC retrieval of semantic workflows. In:Proc. of the 26th Int'l Florida Artificial Intelligence Research Society Conf. Menlo Park:AAAI, 2013. 357-362.
    [20] Jin T, Wang JM, Wu NH, et al. Efficient and accurate retrieval of business process models through indexing. LNCS, 2010,6426:402-409.
    [21] Dongen B, Dijkman R, Mendling J. Measuring similarity between business process models. In:Proc. of the Int'l Conf. on Advanced Information Systems Engineering. Springer-Verlag, 2008. 450-464.
    [22] Munkres J. Algorithms for the assignment and transportation problems. Journal of the Society for Industrial & Applied Mathematics, 1957,5(1):32-38.
    附中文参考文献:
    [14] 孙晋永,古天龙,闻立杰,钱俊彦.用于面向过程的基于实例推理的语义工作流相似性算法.计算机集成制造系统,2016,22(2):381-394.
    [15] 宋金凤,闻立杰,王建民.基于任务发生关系的流程模型相似性度量.计算机研究与发展,2017,54(4):832-843.
    相似文献
    引证文献
引用本文

孙晋永,古天龙,闻立杰,钱俊彦,刘华东.基于行为特征的语义工作流修正算法.软件学报,2018,29(11):3260-3277

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2017-07-19
  • 最后修改日期:2017-09-16
  • 录用日期:2017-11-14
  • 在线发布日期: 2017-12-05
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号