基于树分解的空间众包最优任务分配算法
作者:
作者简介:

李洋(1990-),男,江苏徐州人,硕士,主要研究领域为数据挖掘,空间众包;赵艳(1988-),女,博士,CCF专业会员,主要研究领域为数据挖掘,机器学习,轨迹分析,空间众包;贾梦迪(1994-),女,硕士生,CCF学生会员,主要研究领域为数据挖掘,机器学习;郑凯(1983-),男,博士,教授,博士生导师,CCF专业会员,主要研究领域为轨迹挖掘,空间数据库,不确定数据库,空间众包,数据挖掘;杨文彦(1994-),男,硕士生,CCF学生会员,主要研究领域为数据挖掘,机器学习.

通讯作者:

郑凯,E-mail:zhengkai@suda.edu.cn

中图分类号:

TP311


Optimal Task Assignment Algorithm Based on Tree-Decouple in Spatial Crowdsourcing
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [24]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    随着配备高保真传感器的移动设备的普及以及无线网络资费的快速下降,空间众包作为一种问题解决框架被用于解决将位置相关的任务(如路况报告、食品配送)分配给工人(配备智能设备并愿意完成任务的人)的问题.研究空间众包中最优任务分配问题,关键在于设计出将每个任务分配给最合适的工人的任务分配策略,以使得完成的总任务数目最大化,而所有的工人可以在完成所分配的任务后,在预期最晚工作时间之前返回起点.找到全局最优分配是一个棘手的问题,因为该问题不等于单个工人的最佳分配的简单累加.注意到,仅有部分工人存在任务依赖,因此利用树分解技术将工人分割成独立的集合,并提出一种带启发式的深度优先搜索算法,该算法可以快速地更新启发函数界限,从而高效地对不可能成为最优解的分配方案尽早地进行剪枝.实验结果表明:所提出的方法是非常有效的,可以很好地解决最优任务分配问题.

    Abstract:

    The ubiquity of mobile devices with high-fidelity sensors and the sharp decreases in the cost of ultra-broadband wireless network flourish the market of spatial crowdsourcing, which has been proposed as a new framework to assign location-aware tasks (e.g., reporting road traffic, delivering food) to workers (i.e., persons equipped with smart device and willing to perform tasks). This paper studies the task assignment problem that concerns the optimal strategy of assigning each task to proper worker such that the total number of completed tasks can be maximized while all workers can go back to their starting point before expected deadlines after performing assigned tasks. It is an intractable problem since optimal assignment for individual worker does not necessarily lead to global optimal results. Observing that the task assignment dependency only exists amongst subsets of workers, this study utilizes tree-decomposition technique to separate workers into independent clusters and develops an efficient depth-first search algorithm with progressive bounds to prune non-promising assignments. Extended experiments demonstrate the effectiveness and efficiency of the proposed solution.

    参考文献
    [1] Alt F, Shirazi AS, Schmidt A, Kramer U, Nawaz Z. Location-Based crowdsourcing:Extending crowdsourcing to the real world. In:Proc. of the Nordic Conf. on Human-Computer Interaction. Reykjavik:DBLP, 2010. 13-22.[doi:10.1145/1868914.1868921]
    [2] Kazemi L, Shahabi C. GeoCrowd:Enabling query answering with spatial crowdsourcing. In:Proc. of the 20th ACM SIGSPATIAL Int'l Cof. on Advances in Geographic Information Systems. 2012. 189-198.[doi:10.1145/2424321.2424346]
    [3] Deng DX, Shahabi C, Demiryurek U. Maximizing the number of worker's self-selected tasks in spatial crowdsourcing. In:Advances in Geographic Information Systems. 2013. 324-333.[doi:10.1145/2525314.2525370]
    [4] Cheng P, Lian X, Chen Z, Fu R, Chen L, Han JS, Zhao JZ. Reliable diversity-based spatial crowdsourcing by moving workers. Proc. of the VLDB Endowment, 2015,8(10):1022-1033.[doi:10.14778/2794367.2794372]
    [5] Deng DX, Shahabi C, Zhu LH. Task matching and scheduling for multiple workers in spatial crowdsourcing. In:Proc. of the 20th ACM SIGSPATIAL Int'l Cof. on Advances in Geographic Information Systems. 2015. 21.[doi:10.1145/2820783.2820831]
    [6] Khanafer A, Clautiaux F, Talbi EG. Tree-Decomposition based heuristics for the two-dimensional bin packing problem with conflicts. Computers & Operations Research, 2012,39(1):54-63.[doi:10.1016/j.cor.2010.07.009]
    [7] Bulut MF, Yilmaz YS, Demirbas M. Crowdsourcing location-based queries. In:Proc. of the Int'l Conf. on Pervasive Computing and Communications Workshops. 2011. 513-518.[doi:10.1109/PERCOMW.2011.5766944]
    [8] Kazemi L, Shahabi C, Chen L. GeoTruCrowd:Trustworthy query answering with spatial crowdsourcing. In:Proc. of the 20th ACM SIGSPATIAL Int'l Cof. on Advances in Geographic Information Systems. 2013. 314-323.[doi:10.1145/2525314.2525346]
    [9] Zhang G, Chen HP. Quality control for crowdsourcing with spatial and temporal distribution. In:Proc. of the Int'l Conf. on Internet and Distributed Computing Systems. Berlin, Heidelberg:Springer-Verlag, 2013. 169-182.[doi:10.1007/978-3-642-41428-2_14]
    [10] Cornelius C, Kapadia A, Kotz D, Peebles D, Shin M, Triandopoulos N. Anonysense:Privacy-Aware people-centric sensing. In:Proc. of the Int'l Conf. on Mobile Systems, Applications, and Services. 2008. 211-224.[doi:10.1145/1378600.1378624]
    [11] Dwork C. Differential privacy:A survey of results. In:Proc. of the Int'l Conf. on Theory and Applications of MODELS of Computation. Springer-Verlag, 2008. 1-19.[doi:10.1007/978-3-540-79228-4_1]
    [12] Gruteser M, Grunwald D. Anonymous usage of location-based services through spatial and temporal cloaking. In:Proc. of the Int'l Conf. on Mobile Systems, Applications, and Services. 2003. 31-42.[doi:10.1145/1066116.1189037]
    [13] Kazemi L, Shahabi C. Towards preserving privacy in participatory sensing. In:Proc. of the Int'l Conf. on Pervasive Computing and Communications Workshops. 2011. 328-331.[doi:10.1109/PERCOMW.2011.5766897]
    [14] Shen Y, Huang LS, Li L, Lu XR, Wang SW, Yang W. Towards preserving worker location privacy in spatial crowdsourcing. In:Proc. of the IEEE Global Communications Conf. 2015. 1-6.[doi:10.1109/GLOCOM.2015.7416965]
    [15] To H, Ghinita G, Shahabi C. A framework for protecting worker location privacy in spatial crowdsourcing. ACM Trans. on Very Large Databases Endowment, 2014,7(10):919-930.[doi:10.14778/2732951.2732966]
    [16] Pournajaf L, Li X, Sunderam V, Goryczka S. Spatial task assignment for crowd sensing with cloaked locations. In:Proc. of the Int'l Conf. on Mobile Data Management. 2014. 73-82.[doi:10.1109/MDM.2014.15]
    [17] Cheng P, Lian X, Chen L, Shahabi C. Prediction-Based task assignment on spatial crowdsourcing. In:Proc. of the Int'l Conf. on Data Engineering. 2017. 997-1008.
    [18] To H, Fan L, Luan T, Shababi C. Real-Time task assignment in hyperlocal spatial crowdsourcing under budget constraints. In:Proc. of the Int'l Conf. on Pervasive Computing and Communications. 2016. 1-8.[doi:10.1109/PERCOM.2016.7456507]
    [19] Tong YX, She JY, Ding BL, Wang LB, Chen L. Online mobile micro-task allocation in spatial crowdsourcing. In:Proc. of the Int'l Conf. on Data Engineering. IEEE, 2016. 49-60.[doi:10.1109/ICDE.2016.7498228]
    [20] Ul Hassan U, Curry E. Efficient task assignment for spatial crowdsourcing. Expert Systems with Applications:An Int'l Journal, 2016,58(C):36-56.[doi:10.1016/j.eswa.2016.03.022]
    [21] She JY, Tong YX, Chen L. Utility-Aware event-participant planning. In:Proc. of the Int'l Conf. on Management of Data. 2015. 1629-1643.
    [22] Tong YX, Yuan Y, Cheng YR, Chen L, Wang GR. Survey on spatiotemporal crowdsourced data management techniques. Ruan Jian Xue Bao/Journal of Software, 2017,28(1):35-58(in Chinese with English abstract). http://www.jos.org.cn/1000-9825/5140. htm[doi:10.13328/j.cnki.jos.005140]
    附中文参考文献:
    [22] 童咏昕,袁野,成雨蓉,陈雷,王国仁.时空众包数据管理技术研究综述.软件学报,2017,28(1):35-58. http://www.jos.org.cn/1000-9825/5140.htm[doi:10.13328/j.cnki.jos.005140]
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

李洋,贾梦迪,杨文彦,赵艳,郑凯.基于树分解的空间众包最优任务分配算法.软件学报,2018,29(3):824-838

复制
分享
文章指标
  • 点击次数:4035
  • 下载次数: 7388
  • HTML阅读次数: 3839
  • 引用次数: 0
历史
  • 收稿日期:2017-08-01
  • 最后修改日期:2017-09-05
  • 在线发布日期: 2017-12-05
文章二维码
您是第19731411位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号