Coteries轨迹模式挖掘及个性化旅游路线推荐
CSTR:
作者:
作者单位:

作者简介:

李晓旭(1993-),男,辽宁沈阳人,硕士,主要研究领域为轨迹挖掘,社交网;张文超(1992-),男,硕士,主要研究领域为数据挖掘,机器学习,社交网,超图;于亚新(1971-),女,博士,副教授,CCF专业会员,主要研究领域为大数据挖掘,轨迹挖掘,社交网数据分析;王磊(1992-),男,硕士,主要研究领域为数据挖掘,社交网,机器学习,网页挖掘.

通讯作者:

于亚新,E-mail:yuyx@mail.neu.edu.cn

中图分类号:

TP311

基金项目:

国家重点研发计划(2016YFC0101500)


Mining Coteries Trajectory Patterns for Recommending Personalized Travel Routes
Author:
Affiliation:

Fund Project:

National Key Research and Development Program (2016YFC0101500)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    Coterie是一种异步的组模式,要求在不等时间间隔约束下,找出具有相似轨迹行为的组模式.而传统的轨迹组模式挖掘算法往往处理具有固定时间间隔采样约束的GPS数据,因此无法直接用于Coterie模式挖掘.同时,传统组模式挖掘存在语义信息缺失问题,降低了个性化旅游路线推荐的完整度和准确度.为此,提出基于语义的距离敏感推荐策略DRSS (distance-aware recommendation strategy based on semantics)和基于语义的从众性推荐策略CRSS (conformity-aware recommendation strategy based on semantics).此外,随着社交网数据规模的不断增大,传统组模式聚类算法的效率受到极大的挑战,因此,为了高效处理大规模社交网轨迹数据,使用带有优化聚类的MapReduce编程模型来挖掘Coterie组模式.实验结果表明:MapReduce编程模型下带优化聚类和语义信息的Coterie组模式挖掘,在个性化旅游路线推荐上优于传统组模式旅游路线推荐质量,且能够有效处理大规模社交网轨迹数据.

    Abstract:

    Coterie is an asynchronous group pattern that finds the group patterns with similar trajectory behavior under unequal time interval constraints. The traditional trajectory pattern mining algorithm often deals with GPS data with fixed time interval sampling constraints, which cannot be directly used for coterie pattern mining. At the same time, the traditional group pattern mining has the problem of missing semantic information, and thus reduces the completeness and accuracy of individualized tourist routes. To address the issue, two semantic-based tourism route recommendation strategies, distance-aware recommendation strategy based on semantics (DRSS) and conformity-aware recommendation strategy based on semantics (CRSS), are proposed in this paper. In addition, with the increasing size of social network data, the efficiency of traditional group model clustering algorithm is of great challenge. Therefore, in order to deal with large-scale social network trajectory data efficiently, MapReduce programming model with optimized clustering is used to mine the coterie group pattern. The experimental results show that the coterie group pattern mining with optimized clustering and semantic information under the MapReduce programming model achieves better recommendation quality than the traditional group pattern travel route in the personalized tourism route recommendation and can effectively handle the large-scale social network trajectory data.

    参考文献
    相似文献
    引证文献
引用本文

李晓旭,于亚新,张文超,王磊. Coteries轨迹模式挖掘及个性化旅游路线推荐.软件学报,2018,29(3):587-598

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2017-08-01
  • 最后修改日期:2017-11-07
  • 录用日期:
  • 在线发布日期: 2017-12-05
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号