路网感知的在线轨迹压缩方法
作者:
作者简介:

左一萌(1993-),女,山西长治人,硕士生,主要研究领域为大规模数据管理系统,移动计算,时序分析;马帅(1975-),男,博士,教授,博士生导师,CCF高级会员,主要研究领域为数据库理论和系统,社交数据和图分析,密集型数据计算;林学练(1978-),男,博士,讲师,主要研究领域为大规模数据管理系统,密集型数据计算,移动计算,时序分析;姜家豪(1993-),男,硕士生,CCF学生会员,主要研究领域为大规模数据管理系统,移动计算,时序分析.

通讯作者:

林学练,E-mail:linxl@buaa.edu.cn

中图分类号:

TP311

基金项目:

国家自然科学基金(U1636210,61421003);国家重点基础研究发展计划(973)(2014CB340300)


Road Network Aware Online Trajectory Compression
Author:
Fund Project:

National Natural Science Foundation of China (U1636210, 61421003);National Program on Key Basic Research Project (973) (2014CB340300)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [40]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    随着定位技术的高速发展,定位传感器被广泛应用于智能手机、车载导航等移动设备中,用于采集移动对象位置数据并将数据上传至服务器.该技术的应用方便了位置跟踪、预测和分析,同时也带来了轨迹数据量大、数据冗余、传输和存储代价高等问题.轨迹压缩技术即是针对该问题而提出的,它通过保留关键轨迹点和去除冗余轨迹点信息,降低了轨迹数据的传输和存储开销.分析了近年来轨迹压缩领域的研究进展,针对现有研究工作的不足,提出了一种路网感知的在线轨迹压缩方法,包括针对轨迹压缩的距离有界的隐马尔可夫地图匹配算法和误差有界的高效轨迹压缩算法等,实现了该方法的原型系统ROADER (road-network aware and error-bounded trajectory compression).基于真实数据集的实验结果表明,该系统在压缩率、误差和执行时间等方面均显著优于同类算法.

    Abstract:

    With the rapid development of positioning technologies, positioning sensors are widely used in smart phones, car navigation system and other mobile devices. These positioning systems collect data points at certain sampling rates and produce massive trajectories, which further bring the challenges of storage and transmission of the trajectory data. The trajectory compression technique reduces the waste of the network bandwidth and the storage space by removing the redundant trajectory points and preserving the key trajectory points. This paper summarizes the progresses of trajectory compression researches and proposes a road-network aware and error bounded online trajectory compression system, named ROADER. The system includes a distance-bounded Hidden Markov map matching algorithm and error-bounded efficient trajectory compression algorithm. Experiments based on real data sets show that the system is superior to similar systems in terms of compression ratio, error occurrence and running time.

    参考文献
    [1] Giannotti F, Nanni M, Pedreschi D, Pinelli F, Renso C, Rinzivillo S, Trasarti R. Unveiling the complexity of human mobility by querying and mining massive trajectory data. The VLDB Journal-The Int'l Journal on Very Large Data Bases, 2011,20(5):695-719.[doi:10.1007/s00778-011-0244-8]
    [2] Li Q, Zheng Y, Xie X, Chen Y, Liu W, Ma WY. Mining user similarity based on location history. In:Proc. of the 16th ACM SIGSPATIAL Int'l Conf. on Advances in Geographic Information Systems. ACM Press, 2008. 34.[doi:10.1145/1463434. 1463477]
    [3] Zheng Y, Li Q, Chen Y, Xie X, Ma WY. Understanding mobility based on GPS data. In:Proc. of the 10th Int'l Conf. on Ubiquitous Computing. ACM Press, 2008. 312-321.[doi:10.1145/1409635.1409677]
    [4] Doytsher Y, Galon B, Kanza Y. Storing routes in socio-spatial networks and supporting social-based route recommendation. In:Proc. of the 3rd ACM SIGSPATIAL Int'l Workshop on Location-Based Social Networks. ACM Press, 2011. 49-56.[doi:10.1145/2063212.2063219]
    [5] Zheng Y, Zhang L, Ma Z, Xie X, Ma WY. Recommending friends and locations based on individual location history. ACM Trans. on the Web (TWEB), 2011,5(1):5.[doi:10.1145/1921591.1921596]
    [6] Zheng Y, Zhang L, Xie X, Ma WY. Mining interesting locations and travel sequences from GPS trajectories. In:Proc. of the 18th Int'l Conf. on World Wide Web. ACM Press, 2009. 791-800.[doi:10.1145/1526709.1526816]
    [7] Gotsman R, Kanza Y. A dilution-matching-encoding compaction of trajectories over road networks. GeoInformatica, 2015,19(2):331-364.[doi:10.1007/s10707-014-0216-4]
    [8] Song R, Sun W, Zheng B, Zheng Y. PRESS:A novel framework of trajectory compression in road networks. Proc. of the VLDB Endowment, 2014,7(9):661-672.[doi:10.14778/2732939.2732940]
    [9] Meratnia N, Rolf A. Spatiotemporal compression techniques for moving point objects. In:Proc. of the Int'l Conf. on Extending Database Technology. Berlin, Heidelberg:Springer-Verlag, 2004. 765-782.[doi:10.1007/978-3-540-24741-8_44]
    [10] Douglas DH, Peucker TK. Algorithms for the reduction of the number of points required to represent a digitized line or its caricature. Cartographica:The Int'l Journal for Geographic Information and Geovisualization, 1973,10(2):112-122.[doi:10.3138/FM57-6770-U75U-7727]
    [11] Lin X, Ma S, Zhang H, Wo T, Huai J. One-Pass error bounded trajectory simplification. Proc. of the VLDB Endowment, 2017, 10(7):841-852.[doi:10.14778/3067421.3067432]
    [12] Liu J, Zhao K, Sommer P, Shang S, Kusy B, Jurdak R. Bounded quadrant system:Error-bounded trajectory compression on the go. In:Proc. of the 2015 IEEE 31st Int'l Conf. on Data Engineering (ICDE). IEEE, 2015. 987-998.[doi:10.1109/ICDE.2015.7113350]
    [13] Muckell J, Olsen PW, Hwang JH, Hwang JH, Lawson CT, Ravi SS. Compression of trajectory data:A comprehensive evaluation and new approach. GeoInformatica, 2014,18(3):435-460.[doi:10.1007/s10707-013-0184-0]
    [14] Shi W, Cheung CK. Performance evaluation of line simplification algorithms for vector generalization. The Cartographic Journal, 2006,43(1):27-44.[doi:10.1179/000870406X93490]
    [15] Reumann K, Witkam APM. Optimizing curve segmentation in computer graphics. In:Proc. of the Int'l Computing Symp. 1974. 467-472.
    [16] Sklansky J, Gonzalez V. Fast polygonal approximation of digitized curves. Pattern Recognition, 1980,12(5):327-331.[doi:10. 1016/0031-3203(80)90031-X]
    [17] Williams CM. An efficient algorithm for the piecewise linear approximation of planar curves. Computer Graphics and Image Processing, 1978,8(2):286-293.[doi:10.1016/0146-664X(78)90055-2]
    [18] Zhao Z, Saalfeld A. Linear-Time sleeve-fitting polyline simplification algorithms. Proc. of the AutoCarto, 1997,13:214-223.
    [19] Han Y, Sun W, Zheng B. COMPRESS:A comprehensive framework of trajectory compression in road networks. ACM Trans. on Database Systems (TODS), 2017,42(2):11.[doi:10.1145/3015457]
    [20] Keogh E, Chu S, Hart D, Pazzani M. An online algorithm for segmenting time series. In:Proc. of the IEEE Int'l Conf. on Data Mining (ICDM 2001). IEEE, 2001. 289-296.[doi:10.1109/ICDM.2001.989531]
    [21] O'Rourke J. An on-line algorithm for fitting straight lines between data ranges. Communications of the ACM, 1981,24(9):574-578.[doi:10.1145/358746.358758]
    [22] Chan WS, Chin F. Approximation of polygonal curves with minimum number of line segments or minimum error. Int'l Journal of Computational Geometry & Applications, 1996,6(1):59-77.[doi:10.1142/S0218195996000058]
    [23] Potamias M, Patroumpas K, Sellis T. Sampling trajectory streams with spatiotemporal criteria. In:Proc. of the 201618th Int'l Conf. on Scientific and Statistical Database Management. IEEE, 2006. 275-284.[doi:10.1109/SSDBM.2006.45]
    [24] Pavlidis T, Horowitz SL. Segmentation of plane curves. IEEE Trans. on Computers, 1974,100(8):860-870.[doi:10.1109/T-C.1974. 224041]
    [25] Diggelen FV. System design & test-gnss accuracy-lies, damn lies, and statistics-This update to a seminal article first published here in 1998 explains how statistical methods can create many different. GPS World, 2007,18(1):26-33.
    [26] Wu JG, Liu M, Wei G, Liu LF. An inproved trajectory data compression algorithm of sliding window. Computer Technology and Development, 2015,35(5):1209-1212(in Chinese with English abstract).[doi:10.3969/j.issn.1673-629X.2015.12.011]
    [27] Gao Q, Zhang FL, Wang RJ, Zhou F. Trajectory big data:A review of key technologies in data processing. Ruan Jian Xue Bao/Journal of Software, 2017,28(4):959-992(in Chinese with English abstract). http://www.jos.org.cn/1000-9825/5143.htm[doi:10.13328/j.cnki.jos.005143]
    [28] Wang H, Zhang M, Yang R, Lin X, Wo T, Ranjan R, Xu J. SMTP:An optimized storage method for vehicle trajectory data exploiting trajectory patterns. In:Proc. of the 2016 IEEE 18th Int'l Conf. on High Performance Computing and Communications, IEEE 14th Int'l Conf. on Smart City, IEEE 2nd Int'l Conf. on Data Science and Systems (HPCC/SmartCity/DSS). IEEE, 2016. 773-780.[doi:10.1109/HPCC-SmartCity-DSS.2016.0112]
    [29] Zhao XL, Xu WX. Spatio-Temporal trajectory clustering based on interesting location compression. Journal of Beijing Jiaotong University, 2011,35(3):53-57,61(in Chinese with English abstract).[doi:10.3969/j.issn.1673-0291.2011.03.009]
    [30] Hummel B. Map matching for vehicle guidance. In:Proc. of the Dynamic and Mobile GIS:Investigating Space and Time. 2006. 437-438.
    [31] Newson P, Krumm J. Hidden Markov map matching through noise and sparseness. In:Proc. of the 17th ACM SIGSPATIAL Int'l Conf. on Advances in Geographic Information Systems. ACM Press, 2009. 336-343.[doi:10.1145/1653771.1653818]
    [32] Goh CY, Dauwels J, Mitrovic N, Asif MT, Oran A, Jaillet P. Online map-matching based on hidden Markov model for real-time traffic sensing applications. In:Proc. of the 201215th Int'l IEEE Conf. on Intelligent Transportation Systems (ITSC). IEEE, 2012. 776-781.[doi:10.1109/ITSC.2012.6338627]
    [33] Zhou P, Huang W, Jiang J. Validation analysis of OpenStreetMap data in some areas of China. The Int'l Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 2014,40(4):383.[doi:10.5194/isprsarchives-XL-4-383-2014]
    [34] Girres JF, Touya G. Quality assessment of the French OpenStreetMap dataset. trans. in GIS, 2010,14(4):435-459.[doi:10.1111/j. 1467-9671.2010.01203.x]
    [35] Palpanas T, Vlachos M, Keogh E, et al. Online amnesic approximation of streaming time series. In:Proc. of the 20th Int'l Conf. on Data Engineering. IEEE, 2004. 339-349.[doi:10.1109/ICDE.2004.1320009]
    [36] Lazaridis I, Mehrotra S. Capturing sensor-generated time series with quality guarantees. In:Proc. of the 19th Int'l Conf. on Data Engineering. IEEE, 2003. 429-440.[doi:10.1109/ICDE.2003.1260811]
    附中文参考文献:
    [26] 吴家皋,刘敏,韦光,刘林峰.一种改进的滑动窗口轨迹数据压缩算法.计算机技术与发展,2015,35(5):1209-1212.[doi:10.3969/j. issn.1673-629X.2015.12.011]
    [27] 高强,张凤荔,王瑞锦,周帆.轨迹大数据:数据处理关键技术研究综述.软件学报,2017,28(4):959-992. http://www.jos.org.cn/1000-9825/5143.htm[doi:10.13328/j.cnki.jos.005143]
    [29] 赵秀丽,徐维祥.基于有趣地点压缩的时空轨迹聚类.北京交通大学学报,2011,35(3):53-57,61.[doi:10.3969/j.issn.1673-0291. 2011.03.009]
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

左一萌,林学练,马帅,姜家豪.路网感知的在线轨迹压缩方法.软件学报,2018,29(3):734-755

复制
分享
文章指标
  • 点击次数:4389
  • 下载次数: 8458
  • HTML阅读次数: 3271
  • 引用次数: 0
历史
  • 收稿日期:2017-07-30
  • 最后修改日期:2017-09-05
  • 在线发布日期: 2017-12-05
文章二维码
您是第19894625位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号