基于重要度贡献的无标度网络节点评估方法
作者:
作者简介:

尹荣荣(1985-),女,甘肃白银人,博士,副教授,主要研究领域为无线传感器网络容错拓扑控制;尹学良(1993-),男,硕士生,主要研究领域为无线传感器网络容错拓扑控制;崔梦頔(1991-),女,硕士生,主要研究领域为无线传感器网络容错拓扑控制;徐英函(1992-),男,硕士生,主要研究领域为无线传感器网络容错拓扑控制.

通讯作者:

尹荣荣,E-mail:yrr@ysu.edu.cn

基金项目:

国家自然科学基金(61802333);河北省高等学校科学技术研究项目(QN2018029)


Node Evaluation Method Based on Importance Contribution in Scale-free Networks
Author:
Fund Project:

National Natural Science Foundation of China (61802333); Science and Technology Research Project of Colleges and Universities in Hebei Province (QN2018029)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [31]
  • |
  • 相似文献
  • | | |
  • 文章评论
    摘要:

    针对无标度网络的节点重要度评估问题,通过分析节点的邻居数量与其邻居间的拓扑结构,得到节点的结构洞重要性指标,再融合相邻节点的K核重要性指标值来确定相邻节点间的重要度贡献,以此表征相邻节点的局部信息;在此基础上,再结合表征节点位置信息的节点自身的K核重要性,从而提出一种基于节点间重要度贡献关系来评估无标度网络的节点重要度的方法.该方法综合考虑了节点的结构洞特征和K核中心性特征来确定节点的重要度,同时兼顾到了网络的局部和全局重要性.理论分析表明,此方法的时间复杂度仅为on2).与其他几种算法仿真对比的结果表明,该方法可行有效,拥有理想计算能力,适用无标度网络.

    Abstract:

    In order to evaluate the importance of nodes in scale-free networks, by analyzing the number of neighboring nodes and the topology of its neighbors, the index of the structural holes importance of the node is obtained. At the same time, by combining the K core importance index of adjacent nodes, the importance contribution between adjacent nodes is obtained. It characterizes the local information of adjacent nodes. On this basis, combining with the K core importance of the node itself that characterizes the global location information of the node, this study proposes a method to evaluate the importance of nodes in scale-free networks based on the relationship of the importance contribution between nodes. This method takes into account the structural holes characteristics of nodes and the K core central feature to determine the importance contribution between adjacent nodes, and takes into account the local and global importance of the networks. The theoretical analysis shows that the time complexity of this method is only o(n2). Compared with other algorithms, the results show that the method is feasible and effective. It has an ideal computing capability, and is suitable for scale-free networks.

    参考文献
    [1] Lv ML, Guo XL, Chen JQ, Lu ZM, Nie TY. Second-order centrality correlation in scale-free networks. Int'l Journal of Modern Physics C, 2015,26(10):1550116.
    [2] Liu JG, Ren ZM, Guo Q, Wang BH. Node importance ranking of complex networks. Acta Physica Sinica, 2013,62(17):178901(in Chinese with English abstract).
    [3] Song YP, Ni J. Effect of variable network clustering on the accuracy of node centrality. Acta Physica Sinica, 2016,65(2):028901(in Chinese with English abstract).
    [4] Hu ZL, Liu JG, Ren ZM. Analysis of voluntary vaccination model based on the node degree information. Acta Physica Sinica, 2013, 62(21):218901(in Chinese with English abstract).
    [5] Freeman LC. A set of measures of centrality based upon betweenness. Sociometry, 1977,40(1):35-41.
    [6] Goh KI, Oh E, Kahng B, Kim D. Betweenness centrality correlation in social networks. Physical Review E Statistical Nonlinear & Soft Matter Physics, 2003,67(2):017101.
    [7] Kitsak M, Gallos LK, Havlin S, Liljeros F, Muchnik L, Eugene Stanley H, Makse HA. Identification of influential spreaders in complex networks. Nature Physics, 2010,6(11):888-893.
    [8] Chen Y, Hu AQ, Hu X. Evaluation method for node importance in communication networks. Journal of China Institute of Communications, 2004,25(8):129-134(in Chinese with English abstract).
    [9] Zhou X, Zhang FM, Li KW, Hui XB, Wu HS. Finding vital node by node importance evaluation matrix in complex networks. Acta Physica Sinica, 2012,61(5):050201(in Chinese with English abstract).
    [10] Li ZP, Zuo Y, Wang HY. An influence measure of nodes based on structures of social networks. Acta Electronica Sinica, 2016, 44(12):2967-2974(in Chinese with English abstract).
    [11] Burt RS, Kilduff M, Tasselli S. Social network analysis:Foundations and frontiers on advantage. Annual Review of Psychology, 2013,64(1):527-547.
    [12] Zhang HL, Zhang M. Node importance evaluating of communication network based on structural holes index. Computing Technology and Automation, 2016,35(1):101-103(in Chinese with English abstract).
    [13] Su XP, Song RR. Leveraging neighborhood "structural holes" to identifying key spreaders in social networks. Acta Physica Sinica, 2015,64(2):020101(in Chinese with English abstract).
    [14] Yu H, Cao X, Liu Z, Li YJ. Identifying key nodes based on improved structural holes in complex networks. Physica A:Statistical Mechanics & Its Applications, 2017,486:318-327.
    [15] Zhu CS, Wang XY, Liu Z. A novel method of evaluating key nodes in complex networks. Chaos Solitions & Fractals, 2017,96:43-50.
    [16] Yu H, Liu Z, Li YJ. Key nodes in complex networks identified by multi-attribute decision making method. Acta Physica Sinica, 2013,62(2):020204(in Chinese with English abstract).
    [17] Yang YY, Gang X. Efficient identification of node importance in social networks. Information Processing and Management, 2016, 52(5):911-922.
    [18] Han ZM, Wu Y, Tan XS, Duan DG, Yang WJ. Ranking key nodes in complex networks by considering structural holes. Acta Physica Sinica, 2015,64(5):058902(in Chinese with English abstract).
    [19] Zeng A, Zhang CJ. Ranking spreaders by decomposing complex networks. Physics Letters A, 2013,377(14):1031-1035.
    [20] Barabasi AL, Albert R, Jeong H. Mean-field theory for scale-free random networks. Physica A:Statistical Mechanics & Its Applications, 2000,272(1-2):173-187.
    附中文参考文献:
    [2] 刘建国,任卓明,郭强,汪秉宏.复杂网络中节点重要性排序的研究进展.物理学报,2013,62(17):178901.
    [3] 宋玉萍,倪静.网络集聚性对节点中心性指标准确性的影响.物理学报,2016,65(2):028901.
    [4] 胡兆龙,刘建国,任卓明.基于节点度信息的自愿免疫模型研究.物理学报,2013,62(21):218901.
    [8] 陈勇,胡爱群,胡啸.通信网中节点重要性的评价方法.通信学报,2004,25(8):129-134.
    [9] 周漩,张凤鸣,李克武,惠晓滨,吴虎胜.利用重要度评价矩阵确定复杂网络关键节点.物理学报,2012,61(5):050201.
    [10] 李泽鹏,左杨,王宏宇.基于社交网络结构的节点影响力度量方法.电子学报,2016,44(12):2967-2974.
    [12] 张惠玲,张蒙.基于结构洞指数的网络节点重要度评估.计算机技术与自动化,2016,35(1):101-103.
    [13] 苏晓萍,宋玉蓉.利用邻域"结构洞"寻找社会网络中最具影响力节点.物理学报,2015,64(2):020101.
    [16] 于会,刘尊,李勇军.基于多属性决策的复杂网络节点重要性综合评价方法.物理学报,2013,62(2):020204.
    [18] 韩忠明,吴杨,谭旭升,段大高,杨伟杰.面向结构洞的复杂网络关键节点排序.物理学报,2015,64(5):058902.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

尹荣荣,尹学良,崔梦頔,徐英函.基于重要度贡献的无标度网络节点评估方法.软件学报,2019,30(6):1875-1885

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2017-06-01
  • 最后修改日期:2017-08-10
  • 在线发布日期: 2019-06-04
文章二维码
您是第19780646位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号