基于切空间判别学习的流形降维算法
作者:
作者单位:

作者简介:

王锐(1992-),男,安徽寿县人,博士生,主要研究领域为模式识别,机器学习;吴小俊(1967-),男,博士,教授,博士生导师,主要研究领域为人工智能,模式识别,计算机视觉.

通讯作者:

吴小俊,E-mail:xiaojun_wu_jnu@163.com

中图分类号:

基金项目:

国家自然科学基金(61373055,61672265);江苏省教育厅科技成果产业化推进项目(JH10-28);江苏省产学研创新项目(BY2012059)


Manifold Dimensional Reduction Algorithm Based on Tangent Space Discriminant Learning
Author:
Affiliation:

Fund Project:

National Natural Science Foundation of China (61373055, 61672265); Industry Project of Provincial Departmentof Education of Jiangsu Province (JH10-28); Industry Oriented Project of Jiangsu Provincial Department of Technology (BY2012059)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    在基于图像集的流形降维问题中,许多算法的核心思想都是把一个高维的流形直接降到一个维数相对较低、同时具有的判别信息更加充分的流形上.投影度量学习(projection metric learning,简称PML)是一种Grassmann流形降维算法.该算法是基于投影度量,并且使用RCG(Riemannian conjugate gradient)算法优化目标函数,其在多个数据集上都取得了较好的实验结果,但是对于复杂的人脸数据集,如YTC其实验结果相对较差,只取得了66.69%的正确率.同时,RCG算法的时间效率较差.基于上述原因,提出了基于切空间判别学习的流形降维算法.该算法首先对于PML中的投影矩阵添加扰动,使其成为对称正定(symmetric positive definite,简称SPD)矩阵;然后,使用LEM(log-euclidean metric)将其映射到切空间中;最后,利用基于特征值分解的迭代优化算法构造判别函数,得到变换矩阵.对提算法在多个标准数据集上进行了实验验证,并取得了较好的实验结果,从而验证了该算法的有效性.

    Abstract:

    Some good dimensional reduction algorithms based on image set have been developed. The core of these algorithms is performing a geometry-aware dimensionality reduction from the original manifold to a lower-dimensional, more discriminative manifold. Projection Metric Learning is a dimensional reduction algorithm that is based on Grassmann manifold. This algorithm, which is based on projection metric and RCG algorithm, has achieved better results on some benchmark datasets, but for some complicated face datasets, such as YTC, it has just obtained 66.69% classification accuracy. However, RCG algorithm has a poor performance of time efficiency. Based on the above reasons, a dimensional reduction algorithm based on the tangent space discriminant learning is presented. Firstly, perturbation is added to the projection matrix of PML to make it be a SPD matrix. Secondly LEM is adopted to map the element which lies on the SPD manifold to a tangent space, and then the iterative optimization algorithm based on eigen-decomposition is applied to find the discriminant function to obtain the transformation matrix. The experimental results on several standard datasets show the superiority of the proposed algorithm over other state-of-the-art algorithms.

    参考文献
    相似文献
    引证文献
引用本文

王锐,吴小俊.基于切空间判别学习的流形降维算法.软件学报,2018,29(12):3786-3798

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2017-03-01
  • 最后修改日期:2017-05-18
  • 录用日期:
  • 在线发布日期: 2018-12-05
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号