网络评论方面级观点挖掘方法研究综述
作者:
作者简介:

韩忠明(1972-),男,山西文水人,博士,副教授,CCF专业会员,主要研究领域为社会网络,数据挖掘,大数据处理;张梦玫(1995-),女,硕士生,主要研究领域为自然语言处理;李梦琪(1993-),女,硕士生,主要研究领域为自然语言处理;段大高(1976-),男,博士,副教授,CCF专业会员,主要研究领域为数据挖掘,人工智能;刘雯(1992-),男,硕士生,主要研究领域为社交网络挖掘;于重重(1971-),女,博士,教授,CCF高级会员,主要研究领域为模式识别,机器学习.

通讯作者:

韩忠明,E-mail:hanzhongming@btbu.edu.cn

基金项目:

国家自然科学基金(61170112,61532006);北京市自然科学基金(4172016)


Survey of Studies on Aspect-Based Opinion Mining of Internet
Author:
Fund Project:

National Natural Science Foundation of China (61170112, 61532006); Beijing Natural Science Foundation (4172016)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [146]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    网络评论的观点挖掘任务是文本分析的关键问题之一.随着网络评论的快速增长,用户在浏览评论时更加关注细粒度的信息,因此,对评论进行方面级观点挖掘能够帮助消费者更好地做出决策.过去的10多年间,研究人员在大量网络评论语料库上进行观点挖掘等相关研究,并取得了丰硕的研究成果和广泛的应用价值,更不乏优秀学者对观点挖掘方法现状进行综述总结.然而,有针对性地对观点挖掘中的方面提取与观点提取进行综述总结的成果较少.综述了近年来网络评论方面级观点挖掘的研究现状:首先,介绍了方面级观点挖掘的相关问题描述;然后,重点分类介绍方面提取方法及观点内容提取的主要方法;随后,总结了方面级观点挖掘的常见评价指标以及在社会中的广泛应用价值;最后,根据对现有方法提出具有挑战性的方向并进行系统总结.对方面级观点挖掘进行综述有助于比较不同方法的差异,从而发现有价值的研究方向.

    Abstract:

    Opinion mining (OM) of Internet reviews is one of the key issues in text analysis. As the rapid growth of the Internet reviews, users pay more attention to all this fine-grained information when browsing comments. Therefore, aspect-level OM can help consumers make better decisions. In last decade, researchers conducted opinion extraction and analysis on a large number of Internet reviews corpus, and have achieved fruitful research results and broaden the scope of application. There were also some scholars conducted summaries on the present situation of OM methods. To rectify the lack of specific summaries on aspect extraction and opinion expression extraction, this paper analyzes and summarizes the recent research status of aspect-level OM on Internet reviews. The paper describes the aspect-level OM, introduces the different methods of aspect extraction and opinion expression extraction, and summarizes the evaluation measures of aspect-level OM and application values. In the end, it provides an overview of the future challenges along with a synopsis on the existing techniques. This specific survey on aspect-level OM helps to evaluate the different methods and find valuable research direction.

    参考文献
    [1] Hatzivassiloglou V, Mckeown KR. Predicting the semantic orientation of adjectives. In:Proc. of the 35th Annual Meeting of the Association for Computational Linguistics and 8th Conf. of the European Chapter of the Association for Computational Linguistics (ACL/EACL'97). Stroudsburg:ACL, 1997. 174-181.[doi:10.3115/976909.979640]
    [2] Yao TF, Cheng XY, Xu FY, Han W, Wang R. A survey of opining mining for texts. Journal of Chinese Information Processing, 2008,22(3):71-80(in Chinese with English abstract).
    [3] Wang H, Wang HY, Zuo WL. Survey on opinion mining. Application Research of Computers, 2009,26(1):25-29(in Chinese with English abstract).
    [4] Chen M, Zhu FW, Wu MH, Ying J. Survey of opining minining. Journal of Zhejiang University (Engineering Science), 2014, 48(8):1461-1472(in Chinese with English abstract).
    [5] Pang B, Lee L. Opinion mining and sentiment analysis. Foundations & Trends in Information Retrieval, 2008,2(1-2):1-135.[doi:10.1561/1500000011]
    [6] Liu B. Sentiment analysis and opinion mining. Synthesis Lectures on Human Language Technologies, 2012,5(1):1-167.[doi:10. 2200/S00416ED1V01Y201204HLT016]
    [7] Ghag K, Shah K. Comparative analysis of the techniques for sentiment analysis. In:Proc. of the 2013 Int'l Conf. on Advances in Technology and Engineering (ICATE 2013). Washington:IEEE Computer Society, 2013. 1-7.[doi:10.1109/ICAdTE.2013.6524752]
    [8] Ravi K, Ravi V. A survey on opinion mining and sentiment analysis. Knowledge-Based Systems, 2015,89(C):14-46.[doi:10. 1016/j.knosys.2015.06.015]
    [9] Bhatia S, Sharma M, Bhatia KK. Strategies for mining opinions:A survey. In:Proc. of the 2nd Int'l Conf. on Computing for Sustainable Global Development (INDIACom 2015). Washington:IEEE Computer Society, 2015. 262-266.
    [10] Guellil I, Boukhalfa K. Social big data mining:A survey focused on opinion mining and sentiments analysis. In:Proc. of the 12th Int'l Symp. on Programming and Systems (ISPS). Washington:IEEE Computer Society, 2015. 1-10.[doi:10.1109/ISPS.2015. 7244976]
    [11] Rana TA, Cheah YN. Aspect extraction in sentiment analysis:Comparative analysis and survey. Artificial Intelligence Review, 2016,46(4):459-483.[doi:10.1007/s10462-016-9472-z]
    [12] Sun S, Luo C, Chen J. A review of natural language processing techniques for opinion mining systems. Information Fusion, 2017, 36:10-25.[doi:10.1016/j.inffus.2016.10.004]
    [13] Li JH, Liu GS, Lin X. Survey on sentiment orientation analysis and its applications. Journal of Cyber Security, 2017,2(2):48-62(in Chinese with English abstract).
    [14] Chen QH, Sun CH, Jia YB. Overview of text data mining techniques. Industrial Control Computer, 2017,30(2):94-95,102(in Chinese with English abstract).
    [15] Chen XM, Wang FG, Wu HW, Sun ZQ. Social network comments based on opinion mining and application. Information Science, 2013,31(11):119-124(in Chinese with English abstract).
    [16] Kim SM, Hovy E. Determining the sentiment of opinions. In:Proc. of the 20th Int'l Conf. on Computational Linguistics (ICCL 2004). Stroudsburg:ACL, 2004. 1367.[doi:10.3115/1220355.1220555]
    [17] Pang B, Lee L, Vaithyanathan S. Thumbs up? Sentiment classification using machine learning techniques. In:Proc. of the ACL-02 Conf. on Empirical Methods in Natural Language Processing (EMNLP 2002). Stroudsburg:ACL, 2002. 79-86.[doi:10.3115/1118693.1118704]
    [18] Turney PD. Thumbs up or thumbs down? Semantic orientation applied to unsupervised classification of reviews. In:Proc. of the 40th Annual Meeting of the Association for Computational Linguistics (ACL 2002). Stroudsburg:ACL, 2002. 417-424.[doi:10. 3115/1073083.1073153]
    [19] Barbosa L, Feng J. Robust sentiment detection on Twitter from biased and noisy data. In:Proc. of the 23rd Int'l Conf. on Computational Linguistics (COLING 2010). Stroudsburg:ACL, 2010. 36-44.
    [20] Jiang L, Yu M, Zhou M, Liu X,Zhao T. Target-Dependent Twitter sentiment classification. In:Proc. of the 49th Annual Meeting of the Association for Computational Linguistics (ACL 2011). Stroudsburg:ACL, 2011. 151-160.
    [21] Speriosu M, Sudan N, Upadhyay S, Baldridge J. Twitter polarity classification with label propagation over lexical links and the follower graph. In:Proc. of the Conf. on Empirical Methods in Natural Language Processing (EMNLP 2011). Stroudsburg:ACL, 2011. 53-63.
    [22] Valakunde ND, Patwardhan MS. Multi-Aspect and multi-class based document sentiment analysis of educational data catering accreditation process. In:Proc. of the Int'l Conf. on Cloud & Ubiquitous Computing & Emerging Technologies (CUBE 2013). Washington:IEEE Computer Society, 2013. 188-192.[doi:10.1109/CUBE.2013.42]
    [23] Karamibekr M, Ghorbani AA. Sentence subjectivity analysis in social domains. In:Proc. of the 2013 IEEE/WIC/ACM Int'l Joint Conf. on Web Intelligence (WI) and Intelligent Agent Technologies (IAT). Washington:IEEE Computer Society, 2013. 268-275.[doi:10.1109/WI-IAT.2013.39]
    [24] Wiebe J, Wilson T, Bruce R, Bell M, Martin M. Learning subjective language. Computational Linguistics, 2004,30(3):277-308.[doi:10.1162/0891201041850885]
    [25] Wilson T, Wiebe J, Hoffmann P. Recognizing contextual polarity in phrase-level sentiment analysis. Int'l Journal of Computer Applications, 2005,7(5):347-354.[doi:10.3115/1220575.1220619]
    [26] Jin W, Ho HH. A novel lexicalized HMM-based learning framework for Web opinion mining. In:Proc. of the 26th Annual Int'l Conf. on Machine Learning (ICML 2009). New York:ACM Press, 2009. 465-472.[doi:10.1145/1553374.1553435]
    [27] Jin W, Ho HH, Srihari RK.Opinion miner:A novel machine learning system for Web opinion mining and extraction. In:Proc. of the 15th ACM SIGKDD Int'l Conf. on Knowledge Discovery and Data Mining (KDD 2009). New York:ACM Press, 2009. 1195-1204.
    [28] Zhang S, Jia WJ, Xia YJ, Meng Y, Yu H. Opinion analysis of product reviews. In:Proc. of the 6th Int'l Conf. on Fuzzy Systems and Knowledge Discovery (FSKD 2009), Vol.2. Washington:IEEE Computer Society, 2009. 591-595.[doi:10.1109/FSKD.2009. 200]
    [29] Xu B, Zhao TJ, Wang SY, Zheng DQ. Extraction of opinion targets based on shallow parsing features. Acta Automatica Sinica, 2011,37(10):1241-1247(in Chinese with English abstract).
    [30] Hofmann T. Probabilistic latent semantic indexing. In:Proc. of the 22nd Annual Int'l ACM SIGIR Conf. on Research and Development in Information Retrieval (SIGIR'99). New York:ACM Press, 1999. 50-57.[doi:10.1145/312624.312649]
    [31] Blei DM, Ng AY, Jordan MI. Latent dirichlet allocation. Journal of Machine Learning Research, 2003,3:993-1022.
    [32] Hu Y, Boyd-Graber J, Satinoff B, Smith A. Interactive topic modeling. Machine Learning, 2014,95(3):423-469.[doi:10.1007/s10994-013-5413-0]
    [33] Chen Z, Liu B. Mining topics in documents:Standing on the shoulders of big data. In:Proc. of the 20th ACM SIGKDD Int'l Conf. on Knowledge Discovery and Data Mining (KDD 2014). New York:ACM Press, 2014. 1116-1125.[doi:10.1145/2623330. 2623622]
    [34] Mcauliffe JD, Blei DM. Supervised topic models. In:Proc. of the Advances in Neural Information Processing Systems. 2008. 121-128.
    [35] Kessler J, Nicolov N. Targeting sentiment expressions through supervised ranking of linguistic configurations. In:Proc. of the 3rd Int'l AAAI Conf. on Weblogs and Social Media (ICWSM 2009). Menlo Park:AAAI Press, 2009. 90-97.
    [36] Jiang P, Zhang C, Fu H, Niu Z, Yang Q. An approach based on tree kernels for opinion mining of online product reviews. In:Proc. of the 10th IEEE Int'l Conf. on Data Mining (ICDM 2010). Washington:IEEE Computer Society, 2010. 256-265.[doi:10.1109/ICDM.2010.104]
    [37] Collobert R, Weston J, Bottou L, Karlen M, Kavukcuoglu K, Kuksa P. Natural language processing (almost) from scratch. Journal of Machine Learning Research, 2011,12(1):2493-2537.
    [38] Poria S, Cambria E, Gelbukh A. Deep convolutional neural network textual features and multiple kernel learning for utterance-level multimodal sentiment analysis. In:Proc. of the 2015 Conf. on Empirical Methods in Natural Language Processing (EMNLP 2015). Stroudsburg:ACL, 2015. 2539-2544.[doi:10.18653/v1/D15-1303]
    [39] Poria S, Cambria E, Gelbukh A. Aspect extraction for opinion mining with a deep convolutional neural network. Knowledge-Based Systems, 2016,108(C):42-49.[doi:10.1016/j.knosys.2016.06.009]
    [40] Hu M, Liu B. Mining and summarizing customer reviews. In:Proc. of the 10th ACM SIGKDD Int'l Conf. on Knowledge Discovery and Data Mining (KDD 2004). New York:ACM Press, 2004. 168-177.[doi:10.1145/1014052.1014073]
    [41] Chinsha TC, Joseph S. A syntactic approach for aspect based opinion mining. In:Proc. of the 9th IEEE Int'l Conf. on Semantic Computing (ICSC 2015). Washington:IEEE Computer Society, 2015. 24-31.[doi:10.1109/ICOSC.2015.7050774]
    [42] Popescu AM, Etzioni O. Extracting product features and opinions from reviews. In:Proc. of the Conf. on Human Language Technology and Empirical Methods in Natural Language Processing (HLT-EMNLP 2007). Stroudsburg:ACL, 2007. 9-28.[doi:10.3115/1220575.1220618]
    [43] Liu HY, Zhao YY, Qin B, Liu T. Comment target extraction and sentiment classification. Journal of Chinese Information Processing, 2010,24(1):84-88(in Chinese with English abstract).
    [44] Yi J, Nasukawa T, Bunescu R, Niblack W. Sentiment analyzer:Extracting sentiments about a given topic using natural language processing techniques. In:Proc. of the 3rd IEEE Int'l Conf. on Data Mining (ICDM 2003). Washington:IEEE Computer Society, 2003. 427-434.[doi:10.1109/ICDM.2003.1250949]
    [45] Samha AK, Li Y, Zhang J. Aspect-Based opinion extraction from customer reviews. Int'l Journal of Computer Science & Information Technolo, 2014,4(4):149-160.
    [46] Zhu J, Wang H, Zhu M, Tsou BK, Ma M. Aspect-Based opinion polling from customer reviews. IEEE Trans. on Affective Computing, 2011,2(1):37-49.[doi:10.1109/T-AFFC.2011.2]
    [47] Bagheri A, Saraee M, Jong FD. An unsupervised aspect detection model for sentiment analysis of reviews. Lecture Notes in Computer Science, 2013,7934:140-151.[doi:10.1007/978-3-642-38824-8_12]
    [48] Quan C, Ren F. Unsupervised product feature extraction for feature-oriented opinion determination. Information Sciences, 2014, 272(C):16-28.[doi:10.1016/j.ins.2014.02.063]
    [49] Zhou X, Wan X, Xiao J. CMiner:Opinion extraction and summarization for Chinese microblogs. IEEE Trans. on Knowledge and Data Engineering, 2016,28(7):1650-1663.[doi:10.1109/TKDE.2016.2541148]
    [50] Lu Y, Zhai C. Opinion integration through semi-supervised topic modeling. In:Proc. of the 17th Int'l Conf. on World Wide Web (WWW 2008). New York:ACM Press, 2008. 121-130.[doi:10.1145/1367497.1367514]
    [51] Andrzejewski D, Zhu X, Craven M. Incorporating domain knowledge into topic modeling via Dirichlet forest priors. In:Proc. of the 26th Annual Int'l Conf. on Machine Learning (ICML 2009). New York:ACM Press, 2009. 25-32.[doi:10.1145/1553374.1553378]
    [52] Mukherjee A, Liu B. Aspect extraction through semi-supervised modeling. In:Proc. of the 50th Annual Meeting of the Association for Computational Linguistics:Long Papers-Volume 1(ACL 2012). Stroudsburg:ACL, 2012. 339-348.
    [53] Wang T, Cai Y, Leung H, Lau RYK, Li Q, Min H. Product aspect extraction supervised with online domain knowledge. Knowledge-Based Systems, 2014,71(1):86-100.[doi:10.1016/j.knosys.2014.05.018]
    [54] Liu Q. Research on approaches to opinion target extraction in opinion mining[Ph.D. Thesis]. Nanjing:Southeast University, 2016(in Chinese with English abstract).
    [55] Qiu G, Liu B, Bu J, Chen C. Opinion word expansion and target extraction through double propagation. In:Proc. of the 49th Annual Meeting of the Association for Computational Linguistics (ACL 2011). 2011. 9-27.[doi:10.1162/coli_a_00034]
    [56] Zhao J, Xu H, Huang X, Tan S, Liu K, Zhang Q. Overview of Chinese opinion analysis evaluation 2008. In:Proc. of the 1st Chinese Opinion Analysis Evaluation (COAE 2008). Beijing:The Professional Committee of Information Retrieval, 2008. 1-20.
    [57] Yang X, Su J. Coreference resolution using semantic relatedness information from automatically discovered patterns. In:Proc. of the 45th Annual Meeting of the Association for Computational Linguistics (ACL 2007). Stroudsburg:ACL, 2007. 528-535.
    [58] Lang J, Xin Z, Qin B, Liu T, Li S. Coreference resolution with integrated multiple background semantic knowledge. Journal of Chinese Information Processing, 2009,23(3):3-9(in Chinese with English abstract).
    [59] Hai Z, Chang K, Cong G, Yang CC. An association-based unified framework for mining features and opinion words. ACM Trans. on Intelligent Systems and Technology (TIST), 2015,6(2):1-21.[doi:10.1145/2663359]
    [60] Zeng L, Li F. A classification-based approach for implicit feature identification. In:Song SM, Min Z, eds. Proc. of the 12th China National Conf. on Computational Linguistics (CCL 2013). Berlin, Heidelberg:Springer-Verlag, 2013. 190-202.[doi:10.1007/978-3-642-41491-6_18]
    [61] Sun L, Li S, Li JY, Lv JT. A novel context-based implicit feature extracting method. In:Proc. of the 2014 Int'l Conf. on Data Science and Advanced Analytics (DSAA 2014). Washington:IEEE Computer Society, 2014. 420-424.[doi:10.1109/DSAA.2014. 7058106]
    [62] Ma JM. Research on extraction method of implicit evaluation objects in online user reviews[MS. Thesis]. Beijing:Beijing Jiaotong University, 2017(in Chinese with English abstract).
    [63] Xu H, Zhang F, Wang W. Implicit feature identification in Chinese reviews using explicit topic mining model. Knowledge-Based Systems, 2015,76(1):166-175.[doi:10.1016/j.knosys.2014.12.012]
    [64] Lau RYK, Li C, Liao SSY. Social analytics:Learning fuzzy product ontologies for aspect-oriented sentiment analysis. Decision Support Systems, 2014,65:80-94.[doi:10.1016/j.dss.2014.05.005]
    [65] Zhang Y, Zhu W. Extracting implicit features in online customer reviews for opinion mining. In:Proc. of the 22nd Int'l Conf. on World Wide Web Companion (WWW 2013). New York:ACM Press, 2013. 103-104.[doi:10.1145/2487788.2487835]
    [66] Bagheri A, Saraee M, De JF. Care more about customers:Unsupervised domain-independent aspect detection for sentiment analysis of customer reviews. Knowledge-Based Systems, 2013,52:201-213.[doi:10.1016/j.knosys.2013.08.011]
    [67] Fei G, Liu B, Hsu M, Castellanos M, Ghosh R. A dictionary-based approach to identifying aspects implied by adjectives for opinion mining. In:Proc. of the 24th Int'l Conf. on Computational Linguistics (COLING 2012). Stroudsburg:ACL, 2012. 309.
    [68] Xia L, Wang Z, Chen C, Zhai S. Research on feature-based opinion mining using topic maps. The Electronic Library, 2016,34(3):435-456.[doi:10.1108/EL-11-2014-0197]
    [69] Smrž P. Using WordNet for opinion mining. In:Sojka P, Choi KS, eds. Proc. of the 3rd Int'l WordNet Conf. (GWC 2006). Brno:Masaryk University, 2006. 333-335.
    [70] Zhu YL, Min J, Zhou YQ, Huang XJ, Wu LD. Semantic orientation computing based on HowNet. Journal of Chinese Information Processing, 2006,20(1):16-22(in Chinese with English abstract).
    [71] Li D, Qiao BJ, Cao YD, Wan YL. Word orientation recognition based on semantic analysis. Pattern Recognition and Artificial Intelligence, 2008,21(4):482-487(in Chinese with English abstract).
    [72] Du WF, Tan SB, Yun XC, Cheng XQ. A new method to compute semantic orientation. Journal of Computer Research and Development, 2009,46(10):1713-1720(in Chinese with English abstract).
    [73] Su F, Markert K. Subjectivity recognition on word senses via semi-supervised mincuts. In:Proc. of the Human Language Technologies:The 2009 Annual Conf. of the North American Chapter of the Association for Computational Linguistics (HLT-NAACL 2009). Stroudsburg:ACL, 2009. 1-9.
    [74] Esuli A, Sebastiani F. Determining the semantic orientation of terms through gloss classification. In:Herzog O, Schek HJ, eds. Proc. of the 14th ACM Int'l Conf. on Information and Knowledge Management (CIKM 2005). New York:ACM Press, 2005. 617-624.[doi:10.1145/1099554.1099713]
    [75] Turney PD, Littman ML. Measuring praise and criticism:Inference of semantic orientation from association. ACM Trans. on Information Systems (TOIS), 2003,21(4):315-346.[doi:10.1145/944012.944013]
    [76] Kim SM, Hovy E. Automatic detection of opinion bearing words and sentences. In:Dale R, Wong KF, eds. Proc. of the 2nd Int'l Joint Conf. on Natural Language Processing (IJCNLP 2005). Berlin:Springer-Verlag, 2005. 61-66.
    [77] Kim SM, Hovy E. Identifying and analyzing judgment opinions. In:Robert C, Jeff A, Jennifer C, Mark S, eds. Proc. of the Main Conf. on Human Language Technology Conf. of the North American Chapter of the Association of Computational Linguistics (HLT-NAACL 2006). Stroudsburg:ACL, 2006. 200-207.
    [78] Liu H, He J, Wang T, Song W,Du X. Combining user preferences and user opinions for accurate recommendation. Electronic Commerce Research and Applications, 2013,12(1):14-23.[doi:10.1016/j.elerap.2012.05.002]
    [79] Lu H, Niu ZD, Zhang N, Sun XK, Liu WL. A model for sentiment classification of Chinese microblog based on parsing and theme extension. Trans. of Beijing Institute of Technology, 2014,34(8):824-830(in Chinese with English abstract).
    [80] Matsuo Y, Ishizuka M. Keyword extraction from a single document using word co-occurrence statistical information. Int'l Journal on Artificial Intelligence Tools, 2004,13(1):157-169.[doi:10.1142/S0218213004001466]
    [81] Lin C, He Y, Everson R, Ruger S. Weakly supervised joint sentiment-topic detection from text. IEEE Trans. on Knowledge and Data Engineering, 2012,24(6):1134-1145.[doi:10.1109/TKDE.2011.48]
    [82] Pang B, Lee L. A sentimental education:Sentiment analysis using subjectivity summarization based on minimum cuts. In:Proc. of the 42nd Annual Meeting on Association for Computational Linguistics (ACL 2004). Stroudsburg:ACL, 2004. 271-278.[doi:10.3115/1218955.1218990]
    [83] Blitzer J, Dredze M, Pereira F. Biographies, bollywood, boom-boxes and blenders:Domain adaptation for sentiment classification. In:Proc. of the 45th Annual Meeting on Association for Computational Linguistics (ACL 2004), Vol.7. Stroudsburg:ACL, 2007. 440-447.
    [84] Duric A, Song F. Feature selection for sentiment analysis based on content and syntax models. Decision Support Systems, 2012, 53(4):704-711.[doi:10.1016/j.dss.2012.05.023]
    [85] Zheng YG. Research on extended topic model for fine-gained opinion mining of online reviews[MS. Thesis]. Hangzhou:Zhejiang Gongshang University, 2017(in Chinese with English abstract).
    [86] Li CX, Xie LD. Text classification and opinion mining based on LDA. Electronic Technology & Software Engineering, 2017,4:209-210(in Chinese with English abstract).
    [87] Sterckx L, Caragea C, Demeester T, Develder C. Supervised keyphrase extraction as positive unlabeled learning. In:Proc. of the 2016 Conf. on Empirical Methods in Natural Language Processing (EMNLP 2016). Stroudsburg:ACL, 2016. 1924-1929.
    [88] Du J, Gui L, Xu R. Extracting opinion expression with neural attention. In:Li YM, Xiang GX, eds. Proc. of the 5th of Chinese National Conf. on Social Media Processing (SMP 2016). Singapore:Springer-Verlag, 2016. 151-161.[doi:10.1007/978-981-10-2993-6_13]
    [89] Lafferty J, McCallum A, Pereira F. Conditional random fields:Probabilistic models for segmenting and labeling sequence data. In:Brodley C, Danyluk AP, eds. Proc.of the 8th Int'l Conf. on Machine Learning (ICML 2001), Vol.1. New York:ACM Press, 2001. 282-289.
    [90] Pontiki M, Galanis D, Papageorgiou H, Manandhar S, Androutsopoulos I. Semeval-2015 task 12:Aspect based sentiment analysis. In:Nakov P, Zesch T, eds. Proc. of the 9th Int'l Workshop on Semantic Evaluation (SemEval 2015). Stroudsburg:ACL, 2015. 486-495.
    [91] Lu B. Identifying opinion holders and targets with dependency parser in Chinese news texts. In:Proc. of the Human Language Technologies:The 11th Annual Conf. of the North American Chapter of the Association for Computational Linguistics (HLT-NAACL 2010). Stroudsburg:ACL, 2010. 46-51.
    [92] Zhang C. Automatic keyword extraction from documents using conditional random fields. Journal of Computational Information Systems, 2008,4(3):1169-1180.
    [93] Laddha A, Mukherjee A. Extracting aspect specific opinion expressions. In:Proc. of the 2016 Conf. on Empirical Methods in Natural Language Processing (EMNLP 2016). Stroudsburg:ACL, 2016. 627-637.
    [94] Breck E, Choi Y, Cardie C. Identifying expressions of opinion in context. In:Veloso M, ed. Proc. of the 20th Int'l Joint Conf. on Artificial Intelligence (IJCAI 2007). Menlo Park:AAAI Press, 2007. 2683-2688.
    [95] Yang B, Cardie C. Extracting opinion expressions with semi-Markov conditional random fields. In:Proc. of the 2012 Joint Conf. on Empirical Methods in Natural Language Processing and Computational Natural Language Learning (EMNLP-CoNLL 2012). Stroudsburg,:ACL, 2012. 1335-1345.
    [96] Lecun Y, Bengio Y, Hinton G. Deep learning. Nature, 2015,521(7553):436-444.[doi:10.1038/nature14539]
    [97] Li Q, Jin Z, Wang C, Zeng DD. Mining opinion summarizations using convolutional neural networks in Chinese microblogging systems. Knowledge-Based Systems, 2016,107(C):289-300.[doi:10.1016/j.knosys.2016.06.017]
    [98] Pang L, Lan YY, Xu J, Guo JF, Wan SX, Cheng XQ. A survey on deep text matching. Chinese Journal Computers, 2016,40(4):1-19(in Chinese with English abstract).
    [99] Socher R, Perelygin A, Wu JY, Chuang J, Manning CD, Ng AY, Potts C. Recursive deep models for semantic compositionality over a sentiment treebank. In:Proc. of the 2013 Conf. on Empirical Methods in Natural Language Processing (EMNLP 2013). Stroudsburg:ACL, 2013. 1631-1642.
    [100] Yao K, Zweig G, Hwang MY, Shi Y, Yu D. Recurrent neural networks for language understanding. In:Proc. of the 14th Annual Conf. of the Int'l Speech Communication Association (INTERSPEECH 2013). Portand:INTERSPEECH, 2013. 2524-2528.
    [101] Kalchbrenner N, Grefenstette E, Blunsom P. A convolutional neural network for modelling sentences. In:Proc. of the 52nd Annual Meeting of the Association for Computational Linguistics (ACL 2014). Stroudsburg:ACL, 2014. 655-665.
    [102] Huang Z, Xu W, Yu K. Bidirectional LSTM-CRF models for sequence tagging. Computer Science, 2015,20(2):508-517.
    [103] Ma X, Hovy E. End-to-End sequence labeling via bi-directional LSTM-CNNs-CRF. In:Proc. of the 54th Annual Meeting of the Association for Computational Linguistics:Long Papers-Volume (ACL 2016). Stroudsburg:ACL, 2016.[doi:10.13140/RG.2.1. 2182.5685]
    [104] Wiebe J, Wilson T, Cardie C. Annotating expressions of opinions and emotions in language. Language Resources and Evaluation, 2005,39(2-3):165-210.[doi:10.1007/s10579-005-7880-9]
    [105] Johansson R, Moschitti A. Syntactic and semantic structure for opinion expression detection. In:Proc. of the 14th Conf. on Computational Natural Language Learning (CoNLL 2010). Stroudsburg:ACL, 2010. 67-76.
    [106] Ye Q, Zhang ZQ, Luo ZX. Automatically measuring subjectivity of Chinese sentences for sentiment analysis to reviews on the Internet. China Journal of Information Systems, 2007,1(1):79-91(in Chinese with English abstract).
    [107] Dave K, Lawrence S, Pennock DM. Mining the peanut gallery:Opinion extraction and semantic classification of product reviews. In:Proc. of the 12th Int'l Conf. on World Wide Web (WWW 2003). New York:ACM Press, 2003. 519-528.[doi:10.1145/775152.775226]
    [108] Gamon M, Aue A, Corston-Oliver S, Ringger E. Pulse:Mining customer opinions from free text. In:Famili A, Joost N, eds. Proc. of the 6th Int'l Conf. on Intelligent Data Analysis (IDA 2005). Berlin, Heidelberg:Springer-Verlag, 2005. 121-132.[doi:10. 1007/11552253_12]
    [109] Liu B, Hu M, Cheng J. Opinion observer:Analyzing and comparing opinions on the Web. In:Proc. of the 14th Int'l Conf. on World Wide Web (WWW 2005). New York:ACM Press, 2005. 342-351.[doi:10.1145/1060745.1060797]
    [110] Yi J, Niblack W. Sentiment mining in WebFountain. In:Proc. of the 21st IEEE Int'l Conf. on Data Engineering (ICDE 2005). Washington:IEEE Computer Society, 2005. 1073-1083.[doi:10.1109/ICDE.2005.132]
    [111] Wilson T, Hoffmann P, Undaran SS, Kessler K, Wiebe J, Choi Y, Cardie C, Riloff E, Patwardhan S. OpinionFinder:A system for subjectivity analysis. In:Proc. of the Human Language Technology Conf. on Empirical Methods in Natural Language Processing (HLT-EMNLP 2005). Stroudsburg:ACL, 2005. 34-35.
    [112] Mukherjee A. Extracting aspect specific sentiment expressions implying negative opinions. In:Proc. of the 17th Int'l Conf. on Intelligent Text Processing and Computational Linguistics (CICLING 2016). 2016. 1-20.
    [113] Pontiki M, Galanis D, Papageorgiou J, Manandhar S, Androutsopoulosb I. Semeval-2015 task 12:Aspect based sentiment analysis. In:Proc.of the 9th Int'l Workshop on Semantic Evaluation (SemEval 2015). Stroudsburg:Association for Computational Linguistics, 2015. 486-495.
    [114] Snyder B, Barzilay R. Multiple aspect ranking using the good grief algorithm. In:Proc. of the Human Language Technologies:The 2007 Annual Conf. of the North American Chapter of the Association for Computational Linguistics (HLT-NAACL 2007). Stroudsburg:ACL, 2007. 300-307.
    [115] Wilson T, Wiebe J, Hoffmann P. Recognizing contextual polarity in phrase-level sentiment analysis. In:Proc. of the Conf. on Human Language Technology and Empirical Methods in Natural Language Processing. 2005. 347-354.
    [116] Baccianella S, Esuli A, Sebastiani F. Sentiwordnet 3.0:An enhanced lexical resource for sentiment analysis and opinion mining. In:Proc. of the 7th Int'l Conf. on Language Resources and Evaluation. 2010. 2200-2204.
    [117] Stone PJ, Dunphy DC, Smith MS, Ogilvie DM. The General Inquirer:A Computer Approach to Content Analysis. Oxford:The M.I.T. Press, 1968. 375-376.
    [118] Chen WT, Lin SC, Huang SL, Chung YS, Chen KJ. E-HowNet and automatic construction of a lexical ontology. In:Proc. of the Int'l Conf. on Computational Linguistics:Demonstrations (ICCL 2010). Stroudsburg:ACL, 2010. 45-48.
    [119] Ku LW, Chen HH. Mining opinions from the Web:Beyond relevance retrieval. Journal of the Association for Information Science and Technology, 2007,58(12):1838-1850.[doi:10.1002/asi.20630]
    [120] Pennebaker JW, Chung CK, Ireland M, Gonzales A, Booth RJ. The development and psychometric properties of LIWC 2007. LIWC 2007 Manual, 2015,29(11):1020-1025.
    [121] Wang K, Xia R. A survey on automatical construction methods of sentiment lexicons. Acta Automatica Sinica, 2016,42(4):495-511(in Chinese with English abstract).
    [122] Chen H, Zimbra D. AI and opinion mining. IEEE Intelligent Systems, 2010,25(3):74-80.[doi:10.1109/MIS.2010.75]
    [123] Huang XJ, Zhang Q, Wu YB. A survey on sentiment analysis. Journal of Chinese Information Processing, 2011,25(6):118-126(in Chinese with English abstract).
    附中文参考文献
    [2] 姚天昉,程希文,徐飞玉,汉思·乌思克尔特,王睿.文本意见挖掘综述.中文信息学报,2008,22(3):71-80.
    [3] 王辉,王晖昱,左万利.观点挖掘综述.计算机应用研究,2009,26(1):25-29.
    [4] 陈旻,朱凡微,吴明晖,应晶.观点挖掘综述.浙江大学学报:工学版,2014,48(8):1461-1472.
    [13] 李建华,刘功申,林祥.情感倾向性分析及应用研究综述.信息安全学报,2017,2(2):48-62.
    [14] 陈巧红,孙超红,贾宇波.文本数据观点挖掘技术综述.工业控制计算机,2017,30(2):94-95,102.
    [15] 陈晓美,王付国,吴宏伟,孙中秋.社会化网络评论观点挖掘的研究热点与应用进展.情报科学,2013,31(11):119-124.
    [29] 徐冰,赵铁军,王山雨,郑德权.基于浅层句法特征的评价对象抽取研究.自动化学报,2011,37(10):1241-1247.
    [43] 刘鸿宇,赵妍妍,秦兵,刘挺.评价对象抽取及其倾向性分析.中文信息学报,2010,24(1):84-88.
    [54] 刘倩.观点挖掘中评价对象抽取方法的研究[博士学位论文].南京:东南大学,2016.
    [58] 郎君,忻舟,秦兵,刘挺,李生.集成多种背景语义知识的共指消解.中文信息学报,2009,23(3):3-9.
    [62] 马京苗.网购用户评论中隐式评价对象的提取方法研究[硕士学位论文].北京:北京交通大学,2017.
    [70] 朱嫣岚,闵锦,周雅倩,黄萱菁,吴立德.基于HowNet的词汇语义倾向计算.中文信息学报,2006,20(1):16-22.
    [71] 李钝,乔保军,曹元大,万月亮.基于语义分析的词汇倾向识别研究.模式识别与人工智能,2008,21(4):482-487.
    [72] 杜伟夫,谭松波,云晓春,程学旗.一种新的情感词汇语义倾向计算方法.计算机研究与发展,2009,46(10):1713-1720.
    [79] 陆浩,牛振东,张楠,孙星恺,刘文礼.基于句法与主题扩展的中文微博情感倾向性分析模型.北京理工大学学报,2014,34(8):824-830.
    [85] 郑玉桂.面向电商评论细粒度观点挖掘的拓展主题模型研究[硕士学位论文].杭州:浙江工商大学,2017.
    [86] 李晨曦,谢罗迪.基于LDA模型的文本分类与观点挖掘.电子技术与软件工程,2017,4:209-210.
    [98] 庞亮,兰艳艳,徐君,郭嘉丰,万圣贤,程学旗.深度文本匹配综述.计算机学报,2016,40(4):1-19.
    [106] 叶强,张紫琼,罗振雄.面问互联网评论情感分析的中文主观性自动判别方法研究.信息系统学报,2007,1(1):79-91.
    [121] 王科,夏睿.情感词典自动构建方法综述.自动化学报,2016,42(4):495-511.
    [123] 黄萱菁,张奇,吴苑斌.文本情感倾向分析.中文信息学报,2011,25(6):118-126.
    [123] 黄萱菁,张奇,吴苑斌.文本情感倾向分析.中文信息学报,2011,25(6):118-126.
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

韩忠明,李梦琪,刘雯,张梦玫,段大高,于重重.网络评论方面级观点挖掘方法研究综述.软件学报,2018,29(2):417-441

复制
分享
文章指标
  • 点击次数:5445
  • 下载次数: 16283
  • HTML阅读次数: 4777
  • 引用次数: 0
历史
  • 收稿日期:2017-01-10
  • 最后修改日期:2017-06-09
  • 在线发布日期: 2017-10-09
文章二维码
您是第19733072位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号