物联网环境下数据转发模型研究
作者:
基金项目:

国家自然科学基金(61370069,61672111);北京市自然科学基金(4162043);国家重点研发计划(2016QY03D0605)


Review on Data Forwarding Model in Internet of Things
Author:
  • LI Ji-Rui

    LI Ji-Rui

    Key Laboratory of Trustworthy Distributed Computing and Service of Ministry of Education(Beijing University of Posts and Telecommunications), Beijing 100876, China;School of Cyberspace Security, Beijing University of Posts and Telecommunications, Beijing 100876, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • LI Xiao-Yong

    LI Xiao-Yong

    Key Laboratory of Trustworthy Distributed Computing and Service of Ministry of Education(Beijing University of Posts and Telecommunications), Beijing 100876, China;School of Cyberspace Security, Beijing University of Posts and Telecommunications, Beijing 100876, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • GAO Ya-Li

    GAO Ya-Li

    Key Laboratory of Trustworthy Distributed Computing and Service of Ministry of Education(Beijing University of Posts and Telecommunications), Beijing 100876, China;School of Software, Beijing University of Posts and Telecommunications, Beijing 100876, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • GAO Yun-Quan

    GAO Yun-Quan

    Key Laboratory of Trustworthy Distributed Computing and Service of Ministry of Education(Beijing University of Posts and Telecommunications), Beijing 100876, China;School of Cyberspace Security, Beijing University of Posts and Telecommunications, Beijing 100876, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • FANG Bin-Xing

    FANG Bin-Xing

    Key Laboratory of Trustworthy Distributed Computing and Service of Ministry of Education(Beijing University of Posts and Telecommunications), Beijing 100876, China;School of Cyberspace Security, Beijing University of Posts and Telecommunications, Beijing 100876, China
    在期刊界中查找
    在百度中查找
    在本站中查找
Fund Project:

National Natural Science Foundation of China (61370069, 61672111); Natural Science Foundation of Beijing, China (4162043); National Key Research and Development Program of China (2016QY03D0605)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [143]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    随着5G移动通信技术、软件定义网络、命名数据网、移动边缘计算或雾计算等新兴技术或方法的出现及深入研究,物联网应用得到进一步升华.在这种应用场景多样化、服务质量高要求、参与对象普及化的环境下,隶属物联网子范畴的传统无线传感器网络数据转发模型已经不能完全适应这种时代需求,更加适合物联网应用的数据转发模型成为物联网连续性服务保障的基础性问题及研究热点.首先对物联网架构及其应用环境下的数据转发的关键问题进行了分析;其次,对目前具有代表性的物联网数据转发相关研究成果进行了分类总结;然后,选取不同物联网场景下典型的数据转发模型及其使用的数学方法进行评述、分析和对比;最后,指出目前研究中存在的问题及相应的解决方案,并对未来的发展方向进行了展望.研究表明:5G等新兴技术的出现,为物联网环境下数据转发模型的研究带来了新的机遇和挑战,今后的工作重点是对物联网环境下数据转发的节能模型和方法进行攻关,为实际应用提供坚实的理论基础.

    Abstract:

    With the in-depth researches of new technologies or methods such as 5G, software defined networking (SDN), named data networks (NDN), and mobile edge computing or fog computing, Internet of Things (IoT) applications undergo further advancement. In an environment of variety of application scenarios, high quality of service and universal participation of objects, data forwarding models based on traditional wireless sensor networks (WSN) that is the subset of IoT cannot fully adapt to meet the needs. Therefore, in order to guarantee the successive of IoT services, it is the most basic problem and research interest to develop data forwarding mechanism more suitable for IoT. First, in this paper, the architecture of IoT and the key problems of data forwarding in IoT are analyzed. Second, a number of representative studies of data forwarding for IoT are classified. Then, for the chosen typical data forwarding models in different IoT scenarios, their mathematic methods, merits and shortcomings are reviewed along with a comparison of the models in many aspects. Finally, the research problems are analyzed in detail and some future development directions are suggested. In summary, this study shows that the emergence of the new technologies, such as 5G, brings the opportunities and challenges for the research of data forwarding model in IoT. Thus, the key emphasis in future work will be the theoretical research of the model and method of energy-efficient of data forwarding in IoT in providing a solid foundation for the practical applications.

    参考文献
    [1] Gubbi J, Buyya R, Marusic S, Palaniswani M. Internet of Things (IoT):A vision, architectural elements, and future directions. Future Generation Computer Systems, 2013,29(7):1645-1660.[doi:10.1016/j.future.2013.01.010]
    [2] Jararweh Y, Al-Ayyoub M, Benkhelifa E, Vouk M, Rindos A. Sdiot:A software defined based Internet of things framework. Journal of Ambient Intelligence and Humanized Computing, 2015,6(4):453-461.[doi:10.1007/s12652-015-0290-y]
    [3] Li YL, Chen H, Mo SF. Novel query-driven real-time data forwarding in Internet of Things. Chineses Journal of Computers, 2012,35(3):464-476(in Chinese with English abstract).[doi:10.3724/SP.J.1016.2012.00464]
    [4] Haller S, Karnouskos S, Schroth C. The Internet of Things in an enterprise context. In:Proc. of the Future Internet Symp. 2008. 14-28.[doi:10.1007/978-3-642-00985-3_2]
    [5] Truong HL, Dustdar S. Principles for engineering IoT cloud systems. IEEE Cloud Computing, 2015,2(2):68-76.[doi:10.1109/MCC.2015.23]
    [6] Wang L, Ranjan R. Processing distributed Internet of Things data in clouds. IEEE Cloud Computing, 2015,2(1):76-80.[doi:10. 1109/MCC.2015.14]
    [7] Zhu HB, Yang LX, Qi Z. Survey on the Internet of Things. Journal of Nanjing University of Posts & Telecommunications, 2011, 297(6):949-955(in Chinese with English abstract).
    [8] Chen HM, Cui L, Zhou G. A light-weight opportunistic forwarding protocol with optimized preamble length for low-duty-cycle wireless sensor networks. Journal of Computer Science and Technology, 2017,32(1):168-180.[doi:10.1007/s11390-017-1712-4]
    [9] Liu L, Wang P, Wang R. Propagation control of data forwarding in opportunistic underwater sensor networks. Computer Networks, 2017,114:80-94.[doi:10.1016/j.comnet.2017.01.009]
    [10] Li Z, Wang C, Yang S, Jiang C, Li X. LASS:Local-Activity and social-similarity based data forwarding in mobile social networks. IEEE Trans. on Parallel and Distributed Systems, 2015,26(1):174-184.[doi:10.1109/TPDS.2014.2308200]
    [11] Li Z, Wang C, Shao L, Jiang C, Wang C. Exploiting traveling information for data forwarding in community characterized vehicular networks. IEEE Trans. on Vehicular Technology, 2016,PP(99):1.[doi:10.1109/TVT.2016.2633431]
    [12] Yuan Q, Cardei I, Wu J. An efficient prediction-based routing in disruption-tolerant networks. IEEE Trans. on Parallel and Distributed Systems, 2012,23(1):19-31.[doi:10.1109/TPDS.2011.140]
    [13] Gao W, Cao G, La Porta T, Han J. On exploiting transient social contact patterns for data forwarding in delay-tolerant networks. IEEE Trans. on Mobile Computing, 2013,12(1):151-165.[doi:10.1109/TMC.2011.249]
    [14] Yuan P, Ma H, Fu H. Hotspot-Entropy based data forwarding in opportunistic social networks. Pervasive and Mobile Computing, 2015,16:136-154.[doi:10.1016/j.pmcj.2014.06.003]
    [15] Islam M, Razzaque MA, Mamun-Or-Rashid M, Hassan MM, Almogren A, Alelaiwi A. Dynamic traffic engineering for high-throughput data forwarding in wireless mesh networks. Computers & Electrical Engineering, 2016,56:130-144.[doi:10.1016/j. compeleceng.2016.08.004]
    [16] Choi O, Kim S, Jeong J, Lee H, Chong S. Delay-Optimal data forwarding in vehicular sensor networks. IEEE Trans. on Vehicular Technology, 2016,65(8):6389-6402.[doi:10.1109/TVT.2015.2478937]
    [17] Xia Y, Chen W, Liu X, Zhang L, Li X, Xiang Y. Adaptive multimedia data forwarding for privacy preservation in vehicular ad-hoc networks. IEEE Trans. on Intelligent Transportation Systems, 2017,PP(99):1-13.[doi:10.1109/TITS.2017.2653103]
    [18] Wu D, Yang B, Wang H, Wu D, Wang R. An energy-efficient data forwarding strategy for heterogeneous WBANs. IEEE Access, 2016,4:7251-7261.[doi:10.1109/ACCESS.2016.2611820]
    [19] Sundmaeker H, Guillemin P, Friess P, Woelfflé S. Vision and challenges for realising the Internet of Things. Cluster of European Research Projects on the Internet of Things, European Commision, 2010,3(3):34-36.[doi:10.2759/26127]
    [20] Ma HD, Zhao D, Yuan PY. Opportunities in mobile crowd sensing. IEEE Communications Magazine, 2014,52(8):29-35.[doi:10. 1109/MCOM.2014.6871666]
    [21] Ma HD, Yuan PY, Zhao D. Research progress on routing problem in mobile opportunistic networks. Ruan Jian Xue Bao/Journal of Software, 2015,26(3):600-616(in Chinese with English abstract). http://www.jos.org.cn/1000-9825/4741.htm[doi:10.13328/j.cnki. jos.004741]
    [22] Sanaei Z, Abolfazli S, Gani A, Buyya R. Heterogeneity in mobile cloud computing:Taxonomy and open challenges. IEEE Communications Surveys & Tutorials, 2014,16(1):369-392.[doi:10.1109/SURV.2013.050113.00090]
    [23] Barbarossa S, Sardellitti S, Di Lorenzo P. Communicating while computing:Distributed mobile cloud computing over 5G heterogeneous networks. IEEE Signal Processing Magazine, 2014,31(6):45-55.[doi:10.1109/MSP.2014.2334709]
    [24] Kaur T, Chana I. Energy efficiency techniques in cloud computing:A survey and taxonomy. ACM Computing Surveys, 2015,48(2):1-46.[doi:10.1145/2742488]
    [25] Buyya R, Beloglazov A, Abawajy J. Energy-Efficient management of data center resources for cloud computing:A vision, architectural elements, and open challenges. Eprint Arxiv, 2010,12(4):6-17.
    [26] You XH, Pan ZW, Gao XQ, Cao SM, Wu HQ. The 5G mobile communication:The development trends and its emerging key techniques. China Science:Information Science, 2014,5(16):551-563(in Chinese with English abstract).[doi:10.1360/N112014-00032]
    [27] Wang CX, Haider F, Gao XQ, You XH, Yang Y, Yuan DF, Aggoune H, Haas H, Fletcher S, Hepsaydir E. Cellular architecture and key technologies for 5G wireless communication networks. IEEE Communications Magazine, 2014,52(2):122-130.[doi:10.1109/MCOM.2014.6736752]
    [28] Yuan PY, Liu P, Tang S. RIM:Relative-Importance based data forwarding in people-centric networks. Journal of Network and Computer Applications, 2016,62:100-111.[doi:10.1016/j.jnca.2015.12.007]
    [29] El Masri A, Sardouk A, Khoukhi L, Hafid A, Gaiti D. Neighborhood-Aware and overhead-free congestion control for IEEE 802.11 wireless mesh networks. IEEE Trans. on Wireless Communications, 2014,13(10):5878-5892.[doi:10.1109/TWC.2014.2349898]
    [30] Mamun-Or-Rashid M, Alam MM, Razzaque MA, Hong CS. Congestion avoidance and fair event detection in wireless sensor network. IEICE Trans. on Communications, 2007,90(12):3362-3372.[doi:10.1093/ietcom/e90-b.12.3362]
    [31] Ding Y, Yang Y, Xiao L. Multi-Path routing and rate allocation for multi-source video on-demand streaming in wireless mesh networks. In:Proc. of the IEEE Int'l Conf. on Computer Communications (INFOCOM). 2011. 2051-2059.[doi:10.1109/INFCOM.2011.5935013]
    [32] Passos D, Albuquerque CVN. A joint approach to routing metrics and rate adaptation in wireless mesh networks. IEEE/ACM Trans. on Networking (TON), 2012,20(4):999-1009.[doi:10.1109/TNET.2011.2170585]
    [33] Qureshi J, Foh CH, Cai J. Maximum multipath routing throughput in multirate wireless mesh networks. In:Proc. of the 80th IEEE Vehicular Technology Conf. (VTC Fall). 2014. 1-5.[doi:10.1109/VTCFall.2014.6966047]
    [34] Zhou A, Liu M, Li Z, Dutkiewicz E. Cross-Layer design with optimal dynamic gateway selection for wireless mesh networks. Computer Communications, 2015,55:69-79.[doi:10.1016/j.comcom.2014.08.011]
    [35] Jang S, Lee CY. Multipath selection and channel assignment in wireless mesh networks. Wireless Networks, 2011,17(4):1001-1014.[doi:10.1007/s11276-011-0330-2]
    [36] Wu J, Xiao M, Huang L. Homing spread:Community home-based multi-copy routing in mobile social networks. In:Proc. of the IEEE Int'l Conf. on Computer Communications (INFOCOM). 2013. 2319-2327.[doi:10.1109/INFCOM.2013.6567036]
    [37] Amadeo M, Campolo C, Molinaro A. Enhancing content-centric networking for vehicular environments. Computer Networks, 2013, 57(16):3222-3234.[doi:10.1016/j.comnet.2013.07.005]
    [38] Wang L, Afanasyev A, Kuntz R, Vuyyuru R, Wakikawa R, Zhang L. Rapid traffic information dissemination using named data. In:Proc. of the 1st ACM Workshop on Emerging Name-Oriented Mobile Networking Design-Architecture, Algorithms, and Applications. 2012. 7-12.[doi:10.1145/2248361.2248365]
    [39] Zhang L, Afanasyev A, Burke J, Jacobson V, Claffy K, Crowley P, Papadopoulos C, Wang L, Zhang B. Named data networking. ACM SIGCOMM Computer Communication Review, 2014,44(3):66-73.[doi:10.1145/2656877.2656887]
    [40] Angius F, Gerla M, Pau G. Bloogo:Bloom filter based gossip algorithm for wireless NDN. In:Proc. of the 1st ACM Workshop on Emerging Name-Oriented Mobile Networking Design-Architecture, Algorithms, and Applications. 2012. 25-30.[doi:10.1145/2248361.2248369]
    [41] Lu Y, Zhou B, Tung LC, Gerla M, Ramesh A, Nagaraja L. Energy-Efficient content retrieval in mobile cloud. In:Proc. of the 2nd ACM SIGCOMM Workshop on Mobile Cloud Computing. 2013. 21-26.[doi:10.1145/2491266.2491271]
    [42] Yu YT, Dilmaghani RB, Calo S, Sanadidi MY, Gerla M. Interest propagation in named data Manets. In:Proc. of the Int'l Conf. on Computing, Networking and Communications (ICNC). 2013. 1118-1122.[doi:10.1109/ICCNC.2013.6504249]
    [43] Argyriou A, Breva AC, Aoun M. Optimizing data forwarding from body area networks in the presence of body shadowing with dual wireless technology nodes. IEEE Trans. on Mobile Computing, 2015,14(3):632-645.[doi:10.1109/TMC.2014.2321768]
    [44] Amadeo M, Molinaro A, Ruggeri G. E-CHANET:Routing, forwarding and transport in information-centric multihop wireless networks. Computer Communications, 2013,36(7):792-803.[doi:10.1016/j.comcom.2013.01.006]
    [45] Meisel M, Pappas V, Zhang L. Ad hoc networking via named data. In:Proc. of the 5th ACM Int'l Workshop on Mobility in the Evolving Internet Architecture. 2010. 3-8.[doi:10.1145/1859983.1859986]
    [46] Oh SY, Lau D, Gerla M. Content centric networking in tactical and emergency Manets. In:Proc. of the IFIP Wireless Days (WD). 2010. 1-5.[doi:10.1109/WD.2010.5657708]
    [47] Burgess J, Gallagher B, Jensen D, Levine BN. MaxProp:Routing for vehicle-based disruption-tolerant networks. In:Proc. of the 25th IEEE Int'l Conf. on Computer Communications (INFOCOM). 2006. 1-11.[doi:10.1109/INFOCOM.2006.228]
    [48] Karp B, Kung HT. GPSR:Greedy perimeter stateless routing for wireless networks. In:Proc. of the 6th Annual Int'l Conf. on Mobile Computing and Networking. 2000. 243-254. https://dl.acm.org/citation.cfm?id=345910
    [49] Seada K, Zuniga M, Helmy A, Krishnamachari B. Energy-Efficient forwarding strategies for geographic routing in lossy wireless sensor networks. In:Proc. of the 2nd Int'l Conf. on Embedded Networked Sensor Systems. 2004. 108-121.[doi:10.1145/1031495. 1031509]
    [50] Lee S, Bhattacharjee B, Banerjee S. Efficient geographic routing in multihop wireless networks. In:Proc. of the 6th ACM Int'l Symp. on Mobile Ad Hoc Networking and Computing. 2005. 230-241.[doi:10.1145/1062689.1062720]
    [51] Larsson P, Johansson N. Multiuser diversity forwarding in multihop packet radio networks. In:Proc. of the IEEE Wireless Communications and Networking Conf. 2005. 2188-2194.[doi:10.1109/WCNC.2005.1424856]
    [52] Keally M, Zhou G, Xing G. Sidewinder:A predictive data forwarding protocol for mobile wireless sensor networks. In:Proc. of the 6th Annual IEEE Communications Society Conf. on Sensor, Mesh and Ad Hoc Communications and Networks. 2009. 1-9.[doi:10. 1109/SAHCN.2009.5168972]
    [53] Hao J, Yao Z, Huang K, Zhang B, Li C. An energy-efficient routing protocol with controllable expected delay in duty-cycled wireless sensor networks. In:Proc. of the IEEE Int'l Conf. on Communications (ICC). 2013. 6215-6219.[doi:10.1109/ICC.2013. 6655601]
    [54] Zorzi M, Rao RR. Energy and latency performance of geographic random forwarding for ad hoc and sensor networks. In:Proc. of the IEEE Wireless Communications and Networking (WCNC). 2003. 1930-1935.[doi:10.1109/VETECS.2003.1208897]
    [55] Füßler H, Widmer J, Käsemann M, Mauve M, Hartenstein H. Contention-Based forwarding for mobile ad hoc networks. Ad Hoc Networks, 2003,1(4):351-369.[doi:10.1016/S1570-8705(03)00038-6]
    [56] He T, Blum BM, Cao Q, Stankovic JA, Son SH, Abdelzaher TF. Robust and timely communication over highly dynamic sensor networks. Real-Time Systems, 2007,37(3):261-289.[doi:10.1007/s11241-007-9025-2]
    [57] Huang P, Chen H, Xing G, Tan Y. SGF:A state-free gradient-based forwarding protocol for wireless sensor networks. ACM Trans. on Sensor Networks (TOSN), 2009,5(2):14.[doi:10.1145/1498915.1498920]
    [58] Li L, Sun L, Ma J, Chen C. A receiver-based opportunistic forwarding protocol for mobile sensor networks. In:Proc. of the IEEE Int'l Conf. on Distributed Computing Systems Workshops. 2008. 198-203.[doi:10.1109/ICDCS.Workshops.2008.105]
    [59] Biswas S, Morris R. ExOR:Opportunistic multi-hop routing for wireless networks. ACM SIGCOMM Computer Communication Review, 2005,35(4):133-144.[doi:10.1145/1090191.1080108]
    [60] Gu Y, He T. Data forwarding in extremely low duty-cycle sensor networks with unreliable communication links. In:Proc. of the 5th ACM Int'l Conf. on Embedded Networked Sensor Systems. 2007. 321-334.[doi:10.1145/1322263.1322294]
    [61] Cao Z, He Y, Liu Y. L2:Lazy forwarding in low duty cycle wireless sensor networks. In:Proc. of the IEEE Int'l Conf. on Computer Communications (INFOCOM). 2012. 1323-1331.[doi:10.1109/INFCOM.2012.6195495]
    [62] Unterschütz S, Renner C, Turau V. Opportunistic, receiver-initiated data-collection protocol. In:Proc. of the 9th European Conf. on Wireless Sensor Networks. 2012. 1-16.[doi:10.1007/978-3-642-28169-3_1]
    [63] Landsiedel O, Ghadimi E, Duquennoy S, Johansson M. Low power, low delay:Opportunistic routing meets duty cycling. In:Proc. of the 11th ACM Int'l Conf. on Information Processing in Sensor Networks. 2012. 185-196.[doi:10.1109/IPSN.2012.6920956]
    [64] Duquennoy S, Landsiedel O, Voigt T. Let the tree Bloom:Scalable opportunistic routing with ORPL. In:Proc. of the 11th ACM Conf. on Embedded Networked Sensor Systems. 2013. 1-14.[doi:10.1145/2517351.2517369]
    [65] Autenrieth M, Frey H. PaderMAC:A low-power, low-latency MAC layer with opportunistic forwarding support for wireless sensor networks. In:Proc. of the Int'l Conf. on Ad-Hoc Networks and Wireless. 2011. 117-130.[doi:10.1007/978-3-642-22450-8_9]
    [66] Kim H, Tang J, Anderson R, Mascolo C. Centrality prediction in dynamic human contact networks. Computer Networks, 2012, 56(3):983-996.[doi:10.1016/j.comnet.2011.10.022]
    [67] Merugu S, Ammar MH, Zegura EW. Routing in space and time in networks with predictable mobility. Technical Report, GIT-CC-04-07, Atlanta:Georgia Institute of Technology, 2004. 1-13.
    [68] Jain S, Fall K, Patra R. Routing in a delay tolerant network. In:Proc. of the ACM SIGCOMM Conf. on Applications. 2004. 145-158.[doi:10.1145/1030194.1015484]
    [69] Liu C, Wu J. Routing in a cyclic mobispace. In:Proc. of the 9th ACM Int'l Symp. on Mobile Ad Hoc Networking and Computing. 2008. 351-360.[doi:10.1145/1374618.1374665]
    [70] Acer UG, Giaccone P, Hay D, Neglia G, Tarapiah S. Timely data delivery in a realistic bus network. IEEE Trans. on Vehicular Technology, 2012,61(3):1251-1265.[doi:10.1109/TVT.2011.2179072]
    [71] Lindgren A, Doria A, Schelen O. Probabilistic routing in intermittently connected networks. ACM SIGMOBILE Mobile Computing and Communications Review, 2003,7(3):19-20.[doi:10.1145/961268.961272]
    [72] Musolesi M, Hailes S, Mascolo C. Adaptive routing for intermittently connected mobile ad hoc networks. In:Proc. of the 6th IEEE Int'l Symp. on a World of Wireless Mobile and Multimedia Networks (WoWMoM). 2005. 183-189.[doi:10.1109/WOWMOM. 2005.17]
    [73] Leguay J, Friedman T, Conan V. Evaluating mobility pattern space routing for DTNs. In:Proc. of the 25th IEEE Int'l Conf. on Computer Communications (INFOCOM). 2005. 1-10.[doi:10.1109/INFOCOM.2006.299]
    [74] Spyropoulos T, Psounis K, Raghavendra CS. Efficient routing in intermittently connected mobile networks:The multiple-copy case. IEEE/ACM Trans. on Networking (ToN), 2008,16(1):77-90.[doi:10.1109/TNET.2007.897964]
    [75] Erramilli V, Crovella M, Chaintreau A, Diot C. Delegation forwarding. In:Proc. of the 9th ACM Int'l Symp. on Mobile Ad Hoc Networking and Computing. 2008. 251-260.[doi:10.1145/1374618.1374653]
    [76] Xiao M, Wu J, Liu C, Huang L. Tour:Time-Sensitive opportunistic utility-based routing in delay tolerant networks. In:Proc. of the IEEE Int'l Conf. on Computer Communications (INFOCOM). 2013. 2085-2091.[doi:10.1109/INFCOM.2013.6567010]
    [77] Coll-Perales B, Gozálvez J, Friderikos V. Energy-Efficient opportunistic forwarding in multi-hop cellular networks using device-to-device communications. Trans. on Emerging Telecommunications Technologies, 2016,27(2):249-265.[doi:10.1002/ett.2855]
    [78] Lall S, Maharaj BTJ, van Vuuren PAJ. Null-Frequency jamming of a proactive routing protocol in wireless mesh networks. Journal of Network and Computer Applications, 2016,61:133-141.[doi:10.1016/j.jnca.2015.10.009]
    [79] Yuan P, Ma H. Hug:Human gathering point based routing for opportunistic networks. In:Proc. of the IEEE Wireless Communications and Networking Conf. (WCNC). 2012. 3024-3029.[doi:10.1109/WCNC.2012.6214323]
    [80] Daly EM, Haahr M. Social network analysis for information flow in disconnected delay-tolerant MANETs. IEEE Trans. on Mobile Computing, 2009,8(5):606-621.[doi:10.1109/TMC.2008.161]
    [81] Hui P, Crowcroft J, Yoneki E. Bubble Rap:Social-Based forwarding in delay-tolerant networks. IEEE Trans. on Mobile Computing, 2010,10(11):1576-1589.[doi:10.1109/TMC.2010.246]
    [82] Mtibaa A, May M, Diot C, Ammar M. Peoplerank:Social opportunistic forwarding. In:Proc. of the IEEE Int'l Conf. on Computer Communications (INFOCOM). 2010. 1-5.[doi:10.1109/INFCOM.2010.5462261]
    [83] Ochiai H, Esaki H. Mobility entropy and message routing in community-structured delay tolerant networks. In:Proc. of the 4th ACM Asian Conf. on Internet Engineering. 2008. 93-102.[doi:10.1145/1503370.1503396]
    [84] Yuan P, Ma H. Opportunistic forwarding with hotspot entropy. In:Proc. of the 14th IEEE Int'l Symp. and Workshops on a World of Wireless, Mobile and Multimedia Networks (WoWMoM). 2013. 1-9.[doi:10.1109/WoWMoM.2013.6583393]
    [85] Balasubramanian A, Levine B, Venkataramani A. DTN routing as a resource allocation problem. ACM SIGCOMM Computer Communication Review, 2007,37(4):373-384.[doi:10.1145/1282427.1282422]
    [86] Lee K, Yi Y, Jeong J, Won H, Rhee I, Chong S. Max-Contribution:On optimal resource allocation in delay tolerant networks. In:Proc. of the IEEE Int'l Conf. on Computer Communications (INFOCOM). 2010. 1-9.[doi:10.1109/INFCOM.2010.5461932]
    [87] Spyropoulos T, Psounis K, Raghavendra CS. Spray and wait:An efficient routing scheme for intermittently connected mobile networks. In:Proc. of the ACM SIGCOMM Workshop on Delay-Tolerant Networking. 2005. 252-259.[doi:10.1145/1080139. 1080143]
    [88] Jeong J, Guo S, Gu Y, He T, Du DHC. Trajectory-Based data forwarding for light-traffic vehicular ad hoc networks. IEEE Trans. on Parallel and Distributed Systems, 2011,22(5):743-757.[doi:10.1109/TPDS.2010.103]
    [89] Liu C, Wu J. Practical routing in a cyclic mobispace. IEEE/ACM Trans. on Networking (TON), 2011,19(2):369-382.[doi:10. 1109/TNET.2010.2079944]
    [90] Xu F, Guo S, Jeong J, Gu Y, Cao Q, Liu M, He T. Utilizing shared vehicle trajectories for data forwarding in vehicular networks. In:Proc. of the Int'l Conf. on Computer Communications (INFOCOM). 2011. 441-445.[doi:10.1109/INFCOM.2011.5935200]
    [91] Zhao J, Cao G. VADD:Vehicle-Assisted data delivery in vehicular ad hoc networks. IEEE Trans. on Vehicular Technology, 2008, 57(3):1910-1922.[doi:10.1109/TVT.2007.901869]
    [92] Naveen KP, Kumar A. Optimal relay selection with channel probing in wireless sensor networks. In:Proc. of the IEEE ICC Workshop on Sensor Network Protocols & Applications. 2011. 246-253.
    [93] Ehyaie A, Hashemi M, Khadivi P. Using relay network to increase life time in wireless body area sensor networks. In:Proc. of the IEEE Int'l Symp. on a World of Wireless, Mobile and Multimedia Networks & Workshops (WoWMoM). 2009. 1-6.[doi:10.1109/WOWMOM.2009.5282405]
    [94] Engel F, Abrão T, Hanzo L. Relay selection methods for maximizing the lifetime of wireless sensor networks. In:Proc. of the IEEE Wireless Communications and Networking Conf. (WCNC). 2013. 2339-2344.[doi:10.1109/WCNC.2013.6554926]
    [95] Elias J, Mehaoua A. Energy-Aware topology design for wireless body area networks. In:Proc. of the IEEE Int'l Conf. on Communications. 2012. 3409-3410.[doi:10.1109/ICC.2012.6363949]
    [96] Braem B, Latre B, Moerman I, Blondia C, Reusens E, Joseph W, Martens L, Demeester P. The need for cooperation and relaying in short-range high path loss sensor networks. In:Proc. of the Int'l Conf. on Sensor Technologies and Applications. 2007. 566-571.[doi:10.1109/SENSORCOMM.2007.4394980]
    [97] Nabi M, Geilen M, Basten T. MoBAN:A configurable mobility model for wireless body area networks. In:Proc. of the 4th Int'l ICST Conf. on Simulation Tools and Techniques. 2011. 168-177.[doi:10.4108/icst.simutools.2011.245511]
    [98] Sadek AK, Su W, Liu KJR. Clustered cooperative communications in wireless networks. In:Proc. of the IEEE Global Telecommunications Conf. (GLOBECOM). 2005. 3-5.[doi:10.1109/GLOCOM.2005.1577835]
    [99] Arrobo GE, Gitlin RD. New approaches to reliable wireless body area networks. In:Proc. of the IEEE Int'l Conf. on Microwaves, Communications, Antennas and Electronics Systems (COMCAS). 2011. 1-6.[doi:10.1109/COMCAS.2011.6105871]
    [100] Zhang P, Xiao G, Tan HP. Distributed relay scheduling for maximizing lifetime in clustered wireless sensor networks. In:Proc. of the IEEE Int'l Conf. on Communication Systems (ICCS). 2012. 11-15.[doi:10.1109/ICCS.2012.6406099]
    [101] Yun D, Kang J, Kim J, Kim D. A body sensor network platform with two-level communications. In:Proc. of the IEEE Int'l Symp. on Consumer Electronics. 2007. 1-6.[doi:10.1109/ISCE.2007.4382186]
    [102] Fischione C, Ergen SC, Park P, Johansson KH, Sangiovanni-Vincentelli A. Medium access control analytical modeling and optimization in unslotted IEEE 802.15.4 wireless sensor networks. In:Proc. of the 6th Annual IEEE Communications Society Conf. on Sensor, Mesh and Ad Hoc Communications and Networks. 2009. 1-9.[doi:10.1109/SAHCN.2009.5168946]
    [103] Ma Y, Aylor JH. System lifetime optimization for heterogeneous sensor networks with a hub-spoke technology. IEEE Trans. on Mobile Computing, 2004,3(3):286-294.[doi:10.1109/TMC.2004.27]
    [104] Song Y, Zhang C, Fang Y. Joint channel and power allocation in wireless mesh networks:A game theoretical perspective. IEEE Journal on Selected Areas in Communications, 2008,26(7):1149-1159.[doi:10.1109/JSAC.2008.080912]
    [105] Vieira FRJ, De Rezende JF, Barbosa VC, Fdida S. Local heuristic for the refinement of multi-path routing in wireless mesh networks. Computer Networks, 2013,57(1):273-285.[doi:10.1016/j.comnet.2012.09.009]
    [106] Yi J, Adnane A, David S, Parrein B. Multipath optimized link state routing for mobile ad hoc networks. Ad Hoc Networks, 2011, 9(1):28-47.[doi:10.1016/j.adhoc.2010.04.007]
    [107] Guo X, Wang F, Liu J, Cui Y. Path diversified multi-QoS optimization in multi-channel wireless mesh networks. Wireless Networks, 2014,20(6):1583-1596.[doi:10.1007/s11276-014-0698-x]
    [108] Zhao P, Yang X, Wang J, Liu B, Wang J. Admission control on multipath routing in 802.11-based wireless mesh networks. Ad Hoc Networks, 2013,11(8):2235-2251.[doi:10.1016/j.adhoc.2013.05.006]
    [109] Pióro M, Żotkiewicz M, Staehle B, Staehle D, Yuan D. On max-min fair flow optimization in wireless mesh networks. Ad Hoc Networks, 2014,13:134-152.[doi:10.1016/j.adhoc.2011.05.003]
    [110] Wang H, Chin KW, Soh S. On minimizing data forwarding schedule in multi transmit/receive wireless mesh networks. IEEE Access, 2016,4:1570-1582.[doi:10.1109/ACCESS.2016.2553048]
    [111] Khokhar RH, Noor RM, Ghafoor KZ, Ke CH, Ngadi MA. Fuzzy-Assisted social-based routing for urban vehicular environments. EURASIP Journal on Wireless Communications and Networking, 2011,2011(1):1-15.[doi:10.1186/1687-1499-2011-1]
    [112] Naumov V, Gross TR. Connectivity-Aware routing (CAR) in vehicular ad-hoc networks. In:Proc. of the 26th IEEE Int'l Conf. on Computer Communications. 2007. 1919-1927.[doi:10.1109/INFCOM.2007.223]
    [113] Lee KC, Le M, Harri J, Gerla M. Louvre:Landmark overlays for urban vehicular routing environments. In:Proc. of the 68th IEEE Vehicular Technology Conf. (VTC). 2008. 1-5.[doi:10.1109/VETECF.2008.447]
    [114] Jerbi M, Senouci SM, Rasheed T, Ghamri-Doudane Y. Towards efficient geographic routing in urban vehicular networks. IEEE Trans. on Vehicular Technology, 2009,58(9):5048-5059.[doi:10.1109/TVT.2009.2024341]
    [115] Jeong J, Guo S, Gu Y, He T, Du DHC. TSF:Trajectory-Based statistical forwarding for infrastructure-to-vehicle data delivery in vehicular networks. In:Proc. of the 30th IEEE Int'l Conf. on Distributed Computing Systems (ICDCS). 2010. 557-566.[doi:10. 1109/ICDCS.2010.24]
    [116] Jeong J, Guo S, Gu Y, He T, Du D. TBD:Trajectory-Based data forwarding for light-traffic vehicular networks. In:Proc. of the 29th IEEE Int'l Conf. on Distributed Computing Systems (ICDCS). 2009. 231-238.[doi:10.1109/ICDCS.2009.11]
    [117] Xiang Y, Liu Z, Liu R, Sun W, Wang W. GeoSVR:A map-based stateless VANET routing. Ad Hoc Networks, 2013,11(7):2125-2135.[doi:10.1016/j.adhoc.2012.02.015]
    [118] Dua A, Kumar N, Bawa S. A systematic review on routing protocols for vehicular ad hoc networks. Vehicular Communications, 2014,1(1):33-52.[doi:10.1016/j.vehcom.2014.01.001]
    [119] Basagni S, Conti M, Giordano S, Stojmenovic I. Mobile Ad Hoc Networking:The Cutting Edge Directions. Hoboken:Wiley-IEEE Press, 2013. 515-544.[doi:10.1002/9781118511305]
    [120] Zhang L, Yu B, Pan J. GeoMob:A mobility-aware geocast scheme in metropolitans via taxicabs and buses. In:Proc. of the 2014 IEEE Int'l Conf. on Computer Communications (INFOCOM). 2014. 1279-1787.[doi:10.1109/INFOCOM.2014.6848116]
    [121] Wu Y, Zhu Y, Li B. Infrastructure-Assisted routing in vehicular networks. In:Proc. of the IEEE Int'l Conf. on Computer Communications (INFOCOM). 2012. 1485-1493.[doi:10.1109/INFCOM.2012.6195515]
    [122] Wen H, Ren F, Liu J, Lin C, Li P, Fang Y. A storage-friendly routing scheme in intermittently connected mobile network. IEEE Trans. on Vehicular Technology, 2011,60(3):1138-1149.[doi:10.1109/TVT.2011.2104378]
    [123] Zhu H, Dong M, Chang S, Zhu Y, Li M, Shen XS. ZOOM:Scaling the mobility for fast opportunistic forwarding in vehicular networks. In:Proc. of the IEEE Int'l Conf. on Computer Communications (INFOCOM). 2013. 2832-2840.[doi:10.1109/INFCOM. 2013.6567093]
    [124] Nguyen NP, Dinh TN, Tokala S, Thai MT. Overlapping communities in dynamic networks:Their detection and mobile applications. In:Proc. of the 17th ACM Annual Int'l Conf. on Mobile Computing and Networking. 2011. 85-96.[doi:10.1145/2030613. 2030624]
    [125] Qin J, Zhu H, Zhu Y, Lu L, Xue G, Li M. POST:Exploiting dynamic sociality for mobile advertising in vehicular networks. IEEE Trans. on Parallel and Distributed Systems, 2016,27(6):1770-1782.[doi:10.1109/TPDS.2015.2467392]
    [126] Li XY, Gui XL. Research on dynamic trust model for large scale distributed environment. Ruan Jian Xue Bao/Journal of Software, 2007,18(6):1510-1521(in Chinese with English abstract). http://www.jos.org.cn/1000-9825/20070622.htm[doi:10.1360/jos 181510]
    [127] Tian X, Zhu YH, Chi K, Liu JJ, Zhang D. Reliable and energy-efficient data forwarding in industrial wireless sensor networks. IEEE Systems Journal, 2015. 1-11.[doi:10.1109/JSYST.2015.2466696]
    [128] Katti S, Rahul H, Hu W, Katabi D, Médard M, Crowcroft J. XORs in the air:Practical wireless network coding. IEEE/ACM Trans. on Networking (ToN), 2008,16(3):497-510.[doi:10.1109/TNET.2008.923722]
    [129] Le J, Lui JCS, Chiu DM. DCAR:Distributed coding-aware routing in wireless networks. IEEE Trans. on Mobile Computing, 2010, 9(4):596-608.[doi:10.1109/TMC.2009.160]
    [130] Vahdat A, Becker D. Epidemic routing for partially-connected ad hoc networks[MS. Thesis]. Lawrence:Google Inc., 2000. 1-14.
    [131] Daly EM, Haahr M. Social network analysis for routing in disconnected delay-tolerant Manets. In:Proc. of the 8th ACM Int'l Symp. on Mobile Ad Hoc Networking and Computing. 2007. 32-40.[doi:10.1145/1288107.1288113]
    [132] Lee U, Magistretti E, Gerla M, Bellavista P, Corradi A. Dissemination and harvesting of urban data using vehicular sensing platforms. IEEE Trans. on Vehicular Technology, 2009,58(2):882-901.[doi:10.1109/TVT.2008.928899]
    [133] Chen M, Gonzalez S, Vasilakos A, Cao H, Leung VCM. Body area networks:A survey. Mobile Networks and Applications, 2011, 16(2):171-193.[doi:10.1007/s11036-010-0260-8]
    [134] Movassaghi S, Abolhasan M, Lipman J, Smith D, Jamalipour A. Wireless body area networks:A survey. IEEE Communications Surveys & Tutorials, 2014,16(3):1658-1686.[doi:10.1109/SURV.2013.121313.00064]
    [135] Majeed MF, Ahmed SH, Dailey MN. Enabling push-based critical data forwarding in vehicular named data networks. IEEE Communications Letters, 2017,21(4):873-876.[doi:10.1109/LCOMM.2016.2642194]
    [136] Zhang Z, Ma H, Liu L. Cache-Aware named-data forwarding in Internet of Things. In:Proc. of the 2015 IEEE Global Communications Conf. (GLOBECOM). 2015. 1-6.[doi:10.1109/GLOCOM.2015.7417355]
    [137] Sun X, Ansari N. EdgeIoT:Mobile edge computing for the Internet of Things. IEEE Communications Magazine, 2016,54(12):22-29.[doi:10.1109/MCOM.2016.1600492CM]
    附中文参考文献:
    [3] 李英龙,陈红,莫尚丰.实时响应物联网中基于查询的数据转发方案.计算机学报,2012,35(3):464-476.[doi:10.3724/SP.J.1016. 2012.00464]
    [7] 朱洪波,杨龙祥,朱琦.物联网技术进展与应用.南京邮电大学学报(自然科学版),2011,31(1):1-9.
    [21] 马华东,袁培燕,赵东.移动机会网络路由问题研究进展.软件学报,2015,26(3):600-616. http://www.jos.org.cn/1000-9825/4741.htm[doi:10.13328/j.cnki. jos.004741]
    [26] 尤肖虎,潘志文,高西奇,曹淑敏,邬贺铨.5G移动通信发展趋势与若干关键技术.中国科学:信息科学,2014,5(16):551-563.[doi:10.1360/N112014-00032]
    [126] 李小勇,桂小林.大规模分布式环境下动态信任模型研究.软件学报,2007,18(6):1510-1521. http://www.jos.org.cn/1000-9825/20070622.htm[doi:10.1360/jos181510]
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

李继蕊,李小勇,高雅丽,高云全,方滨兴.物联网环境下数据转发模型研究.软件学报,2018,29(1):196-224

复制
分享
文章指标
  • 点击次数:6395
  • 下载次数: 17935
  • HTML阅读次数: 4086
  • 引用次数: 0
历史
  • 收稿日期:2017-05-12
  • 最后修改日期:2017-07-17
  • 在线发布日期: 2017-10-09
文章二维码
您是第19754455位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号