LBSN中融合多维关系的社区发现方法
作者:
作者单位:

作者简介:

龚卫华(1977-),男,湖北武汉人,博士,副教授,CCF专业会员,主要研究领域为复杂网络,数据挖掘;裴小兵(1971-),男,博士,副教授,CCF专业会员,主要研究领域为机器学习,数据挖掘,电信网络管理;陈彦强(1990-),男,硕士,主要研究领域为社交网络,数据挖掘;杨良怀(1967-),男,博士,教授,CCF专业会员,主要研究领域为数据挖掘,闪存数据库.

通讯作者:

裴小兵,E-mail:xiaobingp@hust.edu.cn

中图分类号:

TP311

基金项目:

浙江省自然科学基金(LY13F020026,LY14F020017,LY14C130005);中国博士后科学基金(2015M581957);国家自然科学基金(61571400,31471416);浙江省博士后择优资助科研项目(BSH1502019)


Community Detection of Multi-Dimensional Relationships in Location-Based Social Networks
Author:
Affiliation:

Fund Project:

Natural Science Foundation of Zhejiang Province, China (LY13F020026, LY14F020017, LY14C130005); China Postdoctoral Science Foundation (2015M581957); National Natural Science Foundation of China (61571400, 31471416); Excellent Postdoctoral Research Projects of Zhejiang Province (BSH1502019)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    如何发现高质量的社区结构对于深刻研究和分析基于位置的社交网络(location-based social networks,简称LBSN)这种新型复杂网络具有重要意义,然而,现有的面向社交网络的社区发现方法都无法适用于具有多维异构关系的LBSN.为此,提出了一种基于联合聚类的用户社区发现方法Multi-BVD,该方法首先给出了融合用户社交网络与地理位置标签网络中多模实体及其异构关系的社区划分目标函数,然后使用拉格朗日乘子法得到目标函数极小值的迭代更新规则,并运用块值矩阵分解技术来确定最优的社区划分结果.仿真实验结果表明,Multi-BVD方法能够有效地发现LBSN中具有地理特征的用户社区结构,该社区结构在社交关系和地理兴趣标签上都有更优的内聚性,并能更紧密地体现用户社区与地理标签簇间的兴趣关联性.

    Abstract:

    How to detect the high-quality community structures in location based social networks (LBSN) plays a significant role that helps to study and analyze this novel type of composite network comprehensively. However, most of existing community detection methods in social networks still cannot solve the problems of combining the correlations of multi-typed heterogeneous relations in LBSN. To address the issue, this paper proposes a co-clustering method for mining the users' community with multi-dimensional relationships, called Multi-BVD. Firstly, the objective function of clustering community is given to fuse multi-modal entities and their multi-dimensional relationships embedded in users' social network and geo-tagged location network. Then, in order to gain the minimum value of the given function, Lagrange multiplier method is applied to obtain the iterative upgrading rules of matrix variants so that the optimal results of users' communities can be determined by the way of decomposing block matrices. Simulation results show that the proposed Multi-BVD can find the community structures with geographical characteristics more effectively and accurately in location based social network. At the same time, the mined non-overlapping community has more cohesive structures in both social relationships and geographical tagged interests, which also can better embody the correlations of interests between users' communities and semantic geo-tagged clusters on locations.

    参考文献
    相似文献
    引证文献
引用本文

龚卫华,陈彦强,裴小兵,杨良怀. LBSN中融合多维关系的社区发现方法.软件学报,2018,29(4):1163-1176

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2016-05-08
  • 最后修改日期:2016-07-14
  • 录用日期:
  • 在线发布日期: 2017-11-07
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号