不确定观测下离散事件系统的可诊断性
作者:
基金项目:

国家自然科学基金(61603152,61463044,61363030);广西可信软件重点实验室研究课题(KX201604,KX201606,KX201419,KX201330);贵州省科技厅项目(LH[2014]7421);广西自然科学基金(2015GXNSFAA139285)


Diagnosability of Discrete-Event Systems with Uncertain Observations
Author:
Fund Project:

National Natural Science Foundation of China (61603152, 61463044, 61363030); Research Program of Guangxi Key Laboratory of Trusted Software (KX201604, KX201606, KX201419, KX201330); Scientific Research Fund of Guizhou Provincial Science and Technology Department (LH[2014]7421); Guangxi Natural Science Foundation (2015GXNSFAA139285)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [21]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    从系统诊断的角度来看,可诊断性是离散事件系统的一个重要性质.其要求系统发生故障后经过有限步的观测可以检测并隔离故障.为简单起见,对离散事件系统可诊断性的研究大都假定观测是确定的,即观测到的事件序列与系统实际发生的可观测事件序列一致.而在实际应用中,由于感知器的精度、信息传输通道的噪声等原因,所获取的观测往往是不确定的.重点研究观测不确定条件下离散事件系统的可诊断性问题.首先扩展了传统可诊断性的定义,定义了观测不确定条件下的可诊断性;然后,分别给出各类观测不确定条件下的可诊断性判定方法;在更一般的情况下,各类观测不确定可能共同存在,因此,最后给出一般情况下的可诊断性判定方法.

    Abstract:

    Diagnosability is an important property of discrete-event system (DES) from the perspective of diagnosis. It requires that every fault can be detected and isolated within a finite number of observations after its occurrence. In numerous literatures, diagnosability is studied under the assumption that an observation is certain, i.e., the observation corresponds to the sequence of observable events exactly taking place in the DES. But in practical applications, the assumption may become inappropriate. Due to various reasons such as the precision of sensors and noises in transmission channels, the available observation may be uncertain. This paper focuses on the diagnosability of DESs with uncertain observations. It extends the definition of diagnosability to cope with uncertain observations. Methods are given to check the diagnosability with three types of uncertain observations accordingly. In a more general scenario where multiple uncertainties exist in the observation, a method is also provided to check the diagnosability with all the uncertainties of the observation together.

    参考文献
    [1] Sampath M, Sengupta R, Lafortune S, Sinnamohideen K, Teneketzis D. Diagnosability of discrete-event systems. IEEE Trans. on Automatic Control, 1995,40(9):1555-1575. [doi: 10.1109/9.412626]
    [2] Sampath M, Sengupta R, Lafortune S, Sinnamohideen K, Teneketzis D. Failure diagnosis using discrete-event models. IEEE Trans. on Control Systems Technology, 1996,4(2):105-124. [doi: 10.1109/87.486338]
    [3] Cassandras CG, Lafortune S. Introduction to Discrete Event Systems. Springer-Verlag, 2006.
    [4] Han X, Shi ZZ, Lin F. Research advances in model-based diagnosis. Chinese High Technology Letters, 2009,19(5):543-550 (in Chinese with English abstract). [doi: 10.3772/j.issn.1002-0470.2009.05.018]
    [5] Zhao XF, Ouyang DT. Progress on model-based diagnosis of discrete-event systems. Journal of Frontiers of Computer Science and Technology, 2011,5(2):114-127 (in Chinese with English abstract).
    [6] Wang XY, Ouyang DT, Zhao XF. Diagnosability of discrete event systems with an incomplete model. Ruan Jian Xue Bao/Journal of Software, 2015,26(6):1373-1385 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/4585.htm [doi: 10.13328/j. cnki.jos.004585]
    [7] Zhao XF, Ouyang DT. Model-Based diagnosis of discrete event systems with an incomplete system model. In: Proc. of the 18th European Conf. on Artificial Intelligence (ECAI 2008). Patras, 2008. 189-193.
    [8] Kwong RH, Yeung DL. Fault diagnosis in discrete-event systems: Incomplete models and learning. IEEE Trans. on Systems, Man, and Cybernetics-Part B: Cybernetics, 2011,41(1):118-130. [doi: 10.1109/TSMCB.2010.2047257]
    [9] Wang XY, Ouyang DT, Zhao J. Discrete-Event system diagnosis upon incomplete model. Ruan Jian Xue Bao/Journal of Software, 2012,23(3):465-475 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/4028.htm [doi: 10.3724/SP.J.1001.2012. 04028]
    [10] Lin F. Diagnosability of discrete event systems and its applications. Discrete Event Dynamic Systems, 1994,4(2):197-212. [doi: 10. 1007/BF01441211]
    [11] Jiang SB, Huang ZD, Chandra V, Kumar R. A polynomial algorithm for testing diagnosability of discrete-event systems. IEEE Trans. on Automatic Control, 2001,46(8):1318-1321. [doi: 10.1109/9.940942]
    [12] Lamperti G, Zanella M. Diagnosis of discrete-event systems from uncertain temporal observations. Artificial Intelligence, 2002, 137(1-2):91-163. [doi: 10.1016/S0004-3702(02)00123-6]
    [13] Rintanen J, Grastien A. Diagnosability testing with satisfiability algorithms. In: Proc. of the 20th Int'l Joint Conf. on Artificial Intelligence (IJCAI 2007). Hyderabad, 2007. 532-537.
    [14] Grastien A, Anbulagan A, Rintanen J, Kelareva E. Diagnosis of discrete-event systems using satisfiability algorithms. In: Proc. of the 22nd National Conf. on Artificial Intelligence (AAAI 2007). Vancouver, 2007. 305-310.
    [15] Su XY, Zanella M, Grastien A. Diagnosability of discrete-event systems with uncertain observations. In: Proc. of the 25th Int'l Joint Conf. on Artificial Intelligence (IJCAI 2016). New York, 2016. 1265-1271.
    [16] Lamperti G, Zanella M. Monitoring of active systems with stratified uncertain observations. IEEE Trans. on Systems, Man, and Cybernetics—Part A: Systems and Humans, 2011,41(2):356-369. [doi: 10.1109/TSMCA.2010.2069096]
    附中文参考文献:
    [4] 韩旭,史忠植,林芬.基于模型诊断的研究进展.高技术通讯,2009,19(5):543-550.
    [5] 赵相福,欧阳丹彤.离散事件系统基于模型诊断的研究进展.计算机科学与探索,2011,5(2):114-127.
    [6] 王晓宇,欧阳丹彤,赵相福.不完备离散事件系统的可诊断性.软件学报,2015,26(6):1373-1385. http://www.jos.org.cn/1000-9825/ 4585.htm [doi: 10.13328/j.cnki.jos.004585]
    [9] 王晓宇,欧阳丹彤,赵剑.不完备模型下的离散事件系统诊断方法.软件学报,2012,23(3):465-475. http://www.jos.org.cn/1000-9825/ 4028.htm [doi: 10.3724/SP.J.1001.2012.04028]
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

文习明,余泉,常亮,王驹.不确定观测下离散事件系统的可诊断性.软件学报,2017,28(5):1091-1106

复制
分享
文章指标
  • 点击次数:3974
  • 下载次数: 6336
  • HTML阅读次数: 2610
  • 引用次数: 0
历史
  • 收稿日期:2016-07-15
  • 最后修改日期:2016-09-25
  • 在线发布日期: 2017-01-22
文章二维码
您是第19727216位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号