图数据发布隐私保护的聚类匿名方法
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金(61762044,71561013,61402244);江西科技师范大学重点科研项目(2016XJZD002)


Clustering-Anonymity Approach for Privacy Preservation of Graph Data-Publishing
Author:
Affiliation:

Fund Project:

National Natural Science Foundation of China (61762044, 71561013, 61402244); Key Research Project of Jiangxi Science & Technology Normal University (2016XJZD002)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    社交网络中积累的海量信息构成一类图大数据,为防范隐私泄露,一般在发布此类数据时需要做匿名化处理.针对现有匿名方案难以防范同时以结构和属性信息为背景知识的攻击的不足,研究一种基于节点连接结构和属性值的属性图聚类匿名化方法,利用属性图表示社交网络数据,综合根据节点间的结构和属性相似度,将图中所有节点聚类成一些包含节点个数不小于k的超点,特别针对各超点进行匿名化处理.该方法中,超点的子图隐匿和属性概化可以分别防范一切基于结构和属性背景知识的识别攻击.另外,聚类过程平衡了节点间的连接紧密性和属性值相近性,有利于减小结构和属性的总体信息损失值,较好地维持数据的可用性.实验结果表明了该方法在实现算法功能和减少信息损失方面的有效性.

    Abstract:

    A huge amount of information in social network has accumulated into a kind of big graph data. Generally, to prevent privacy leakage, the data to be published need to be anonymized. Most of the existing anonymization scheme cannot prevent such attacks by background knowledge of both structure and attribute information among nodes. To address the issue, this investigation proposes a clustering-anonymization method for attribute-graph based on link edges and attributes value among nodes. Firstly, the data in the social network is represented by attribute graph. Then all the nodes of this attribute graph are clustered into certain super-nodes according to structural and attribute similarity between two nodes, each of which contains no less than k nodes. Finally, all the super-nodes are anonymized. In this method, the structure masking and attribute generalization for every super-nodes can respectively prevent all the recognition attacks by background knowledge of goals' linkages and attribute information. In addition, it balances the closeness of links among nodes and proximity of attributes value during clustering, therefore can reduce the total loss of information triggered by masking and generalization to maintain the availability of these graph data. Experiment results also demonstrate the approach achieves great algorithm performance and reduces information loss remarkably.

    参考文献
    相似文献
    引证文献
引用本文

姜火文,占清华,刘文娟,马海英.图数据发布隐私保护的聚类匿名方法.软件学报,2017,28(9):2323-2333

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2016-06-28
  • 最后修改日期:2017-01-06
  • 录用日期:
  • 在线发布日期: 2017-09-02
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号