轨迹大数据:数据处理关键技术研究综述
作者:
基金项目:

国家自然科学基金(61602097,61272527);四川省科技厅计划(2015JY0178);四川省科技支撑计划(2016GZ0065,2016GZ0063);中央高校基本科研业务费(ZYGX2014J051,ZYGX2011J066,ZYGX2015J072);中国博士后基金(2015M572464)


Trajectory Big Data: A Review of Key Technologies in Data Processing
Author:
Fund Project:

National Natural Science Foundation of China (61602097, 61272527); Sichuan Provincial Science and Technology Department Project (2015JY0178); Sichuan Sicence-Technology Support Plan Program (2016GZ0065, 2016GZ0063); Fundamental Research Funds for the Central Universities (ZYGX2014J051, ZYGX2011J066, ZYGX2015J072); China Postdoctoral Science Foundation (2015M572464)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [201]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    大数据时代下,移动互联网发展与移动终端的普及形成了海量移动对象轨迹数据.轨迹数据含有丰富的时空特征信息,通过轨迹数据处理技术,可以挖掘人类活动规律与行为特征、城市车辆移动特征、大气环境变化规律等信息.海量的轨迹数据也潜在性地暴露出移动对象行为特征、兴趣爱好和社会习惯等隐私信息,攻击者可以根据轨迹数据挖掘出移动对象的活动场景、位置等属性信息.另外,量子计算因其强大的存储和计算能力成为大数据挖掘重要的理论研究方向,用量子计算技术处理轨迹大数据,可以使一些复杂的问题得到解决并实现更高的效率.对轨迹大数据中数据处理关键技术进行了综述.首先,介绍轨迹数据概念和特征,并且总结了轨迹数据预处理方法,包括噪声滤波、轨迹压缩等;其次,归纳轨迹索引与查询技术以及轨迹数据挖掘已有的研究成果,包括模式挖掘、轨迹分类等;总结了轨迹数据隐私保护技术基本原理和特点,介绍了轨迹大数据支撑技术,如处理框架、数据可视化;也讨论了轨迹数据处理中应用量子计算的可能方式,并且介绍了目前轨迹数据处理中所使用的核心算法所对应的量子算法实现;最后,对轨迹数据处理面临的挑战与未来研究方向进行了总结与展望.

    Abstract:

    The development of mobile internet and the popularity of mobile terminals produce massive trajectory data of moving objects under the era of big data. Trajectory data has spatio-temporal characteristics and rich information. Trajectory data processing techniques can be used to mine the patterns of human activities and behaviors, the moving patterns of vehicles in the city and the changes of atmospheric environment. However, trajectory data also can be exploited to disclose moving objects' privacy information (e.g., behaviors, hobbies and social relationships). Accordingly, attackers can easily access moving objects' privacy information by digging into their trajectory data such as activities and check-in locations. In another front of research, quantum computation presents an important theoretical direction to mine big data due to its scalable and powerful storage and computing capacity. Applying quantum computing approaches to handle trajectory big data could make some complex problem solvable and achieve higher efficiency. This paper reviews the key technologies of processing trajectory data. First the concept and characteristics of trajectory data is introduced, and the pre-processing methods, including noise filtering and data compression, are summarized. Then, the trajectory indexing and querying techniques, and the current achievements of mining trajectory data, such as pattern mining and trajectory classification, are reviewed. Next, an overview of the basic theories and characteristics of privacy preserving with respect to trajectory data is provided. The supporting techniques of trajectory big data mining, such as processing framework and data visualization, are presented in detail. Some possible ways of applying quantum computation into trajectory data processing, as well as the implementation of some core trajectory mining algorithms by quantum computation are also described. Finally, the challenges of trajectory data processing and promising future research directions are discussed.

    参考文献
    [1] Xu JJ, Zheng K, Chi MM, Zhu YY, Yu XH, Zhou XF. Trajectory big data:Data, applications and techniques. Journal on Communications, 2015,36(12):97-105(in Chinese with English abstract).[doi:10.11959/j.issn.1000-436x.2015318]
    [2] Zheng Y. Trajectory data mining:An overview. ACM Trans. on Intelligent Systems & Technology, 2015,6(3):1-41.[doi:10.1145/2743025]
    [3] Yuan J, Zheng Y, Xie X, Sun G. T-Drive:Enhancing driving directions with taxi drivers' intelligence. IEEE Trans. on Knowledge & Data Engineering, 2013,25(1):220-232.[doi:10.1109/TKDE.2011.200]
    [4] Zheng Y, Xie X, Ma WY. GeoLife:A collaborative social networking service among user, location and trajectory. Bulletin of the Technical Committee on Data Engineering, 2010,33(2):32-39.
    [5] Lu F, Duan Y, Zheng N. A practical route guidance approach based on historical and real-time traffic effects. In:Proc. of the Int'l Conf. on Geoinformatics. 2009. 1-6.[doi:10.1109/GEOINFORMATICS.2009.5293444]
    [6] Yuan J, Zheng Y, Xie X. Discovering regions of different functions in a city using human mobility and POIs. In:Proc. of the ACM SIGKDD Int'l Conf. on Knowledge Discovery and Data Mining. ACM Press, 2012. 186-194.[doi:10.1145/2339530.2339561]
    [7] Zheng H, Meng XF. A survey of trajectory privacy-preserving techniques. Chinese Journal of Computers, 2011,34:1820-1830(in Chinese with English abstract). http://cjc.ict.ac.cn/quanwenjiansuo/2011-10/hz.pdf[doi:10.3724/SP.J.1016.2011.01820]
    [8] Zhang XJ, Gui XL, Wu ZD. Privacy preservation for location-based services:A survey. Ruan Jian Xue Bao/Journal of Software, 2015,26(9):2373-2395(in Chinese with English abstract). http://www.jos.org.cn/1000-9825/4857.htm[doi:10.13328/j.cnki.jos. 004857]
    [9] Zheng H, Meng XF, Hu HB, Yi H. You can walk alone:Trajectory privacy-preserving through significant stays protection. In:Proc. of the Database Systems for Advanced Applications. Berlin, Heidelberg:Springer-Verlag, 2012. 351-366.[doi:10.1007/978-3-642-29038-1_26]
    [10] Wang SH, Long GL. Big data and quantum computation. Chinese Science Bulletin, 2015,60(5-6):499-508(in Chinese with English abstract).[doi:10.1360/N972014-00803]
    [11] Elragal A, El-Gendy N. Trajectory data mining:Integrating semantics. Journal of Enterprise Information Management, 2013,26(5):516-535.[doi:10.1108/JEIM-07-2013-0038]
    [12] Chow CY, Mokbel MF. Trajectory privacy in location-based services and data publication. ACM SIGKDD Explorations Newsletter, 2011,13(1):19-29.[doi:10.1145/2031331.2031335]
    [13] Zheng Y, Xie X. Learning travel recommendations from user-generated GPS traces. ACM Trans. on Intelligent Systems & Technology, 2011,2(1):389-396.[doi:10.1145/1889681.1889683]
    [14] Li S, Peter RS. Review of GPS travel survey and GPS data-processing methods. Transport Reviews, 2014,34(3):316-334.[doi:10.1080/01441647.2014.903530]
    [15] Stenneth L, Wolfson O, Yu PS, Xu B. Transportation mode detection using mobile phones and GIS information. In:Proc. of the ACM Sigspatial Int'l Symp. on Advances in Geographic Information Systems. (ACM-Gis 2011). Chicago, 2011. 54-63.[doi:10. 1145/2093973.2093982]
    [16] Lee WC, Krumm J. Trajectory preprocessing. In:Proc. of the Computing with Spatial Trajectories. New York:Springer-Verlag, 2011. 3-33.[doi:10.1007/978-1-4614-1629-6_1]
    [17] Barrios C, Himberg H, Motai Y, Sadek A. Multiple model framework of adaptive extended kalman filtering for predicting vehicle location. In:Proc. of the Intelligent Transportation Systems Conf. (ITSC 2006). IEEE, 2006. 1053-1059.[doi:10.1109/ITSC.2006. 1707361]
    [18] Hightower J, Borriello G. Particle filters for location estimation in ubiquitous computing:A case study. In:Proc. of the 6th Int'l Conf. on Ubiquitous Computing (UbiComp 2004). Nottingham, 2004. 88-106.[doi:10.1007/978-3-540-30119-6_6]
    [19] Gustafsson F. Particle filter theory and practice with positioning applications. IEEE Aerospace & Electronic Systems Magazine, 2010,25(7):53-82.[doi:10.1109/MAES.2010.5546308]
    [20] Zhang F, Wilkie D, Zheng Y, Xie X. Sensing the pulse of urban refueling behavior. ACM Trans. on Intelligent Systems & Technology, 2013,6(3):13-22.[doi:10.1145/2493432.2493448]
    [21] Zhang F, Yuan NJ, Wilkie D, Xie X. Sensing the pulse of urban refueling behavior:A perspective from taxi mobility. ACM Trans. on Intelligent Systems & Technology, 2015,6(3):1-23.[doi:10.1145/2644828]
    [22] Wang Y, Zheng Y, Xue Y. Travel time estimation of a path using sparse trajectories. In:Proc. of the ACM SIGKDD Int'l Conf. on Knowledge Discovery and Data Mining. ACM Press, 2014. 25-34.[doi:10.1145/2623330.2623656]
    [23] Qi G, Pan G, Li S, Wu Z, Zhang D, Sun L, Yang LT. How long a passenger waits for a vacant taxi-Large-Scale taxi trace mining for smart cities. In:Proc. of the Green Computing and Communications. IEEE, 2013. 1029-1036.[doi:10.1109/GreenCom-iThings-CPSCom.2013.175]
    [24] Zhang D, Sun L, Li B, Chen C, Pan G, Li S, Wu Z. Understanding taxi service strategies from taxi GPS traces. IEEE Trans. on Intelligent Transportation Systems, 2015,16(1):123-135.[doi:10.1109/TITS.2014.2328231]
    [25] Meratnia N, de By RA. Spatiotemporal compression techniques for moving point objects. In:Proc. of the Advances in Database Technology (EDBT 2004). Berlin, Heidelberg:Springer-Verlag, 2004. 765-782.[doi:10.1007/978-3-540-24741-8_44]
    [26] Muckell J, Olsen PW, Hwang JH, Lawson CT, Ravi SS. Compression of trajectory data:A comprehensive evaluation and new approach. Geoinformatica, 2014,18(3):435-460.[doi:10.1007/s10707-013-0184-0]
    [27] Hershberger J, Snoeyink J. Speeding up the Douglas-Peucker line-simplification algorithm. In:Proc. of the Int'l Symp. on Spatial Data Handling. 2000. 134-143.
    [28] Zheng Y. Location-Based Social Networks:Users, Computing with Spatial Trajectories. New York:Springer-Verlag, 2010. 243-276.[doi:10.1007/978-1-4614-1629-6_8]
    [29] Richter KF, Schmid F, Laube P. Semantic trajectory compression:Representing urban movement in a nutshell. Journal of Spatial Information Science, 2012,4(4):3-30.[doi:10.5311/josis.2012.4.62]
    [30] Liu JJ, Zhao K, Sommer P, Shang S, Kusy B, Lee JG, Jurdak R. A novel framework for online amnesic trajectory compression in resource-constrained environments. IEEE Trans. on Knowledge & Data Engineering, 2016,28(11):2827-2841.[doi:10.1109/TKDE. 2016.2598171]
    [31] Muckell J, Hwang JH, Patil V, Lawson CT, Fan P, Ravi SS. SQUISH:An online approach for GPS trajectory compression. In:Proc. of the Int'l Conf. on Computing for Geospatial Research & Applications. ACM Press, 2011. 1-8.[doi:10.1145/1999320.1999333]
    [32] Muckell J, Olsen PW, Hwang JH, Ravi SS, Lawson CT. A framework for efficient and convenient evaluation of trajectory compression algorithms. In:Proc. of the 4th Int'l Conf. on Computing for Geospatial Research and Application. 2013. 24-31.[doi:10.1109/COMGEO.2013.5]
    [33] Song R, Sun W, Zheng B, Zheng Y. PRESS:A novel framework of trajectory compression in road networks. Proc. of the VLDB Endowment, 2014,7(9):661-672.[doi:10.14778/2732939.2732940]
    [34] Zheng Y, Zhang LZ, Xie X, Ma WY. Mining interesting locations and travel sequences from GPS trajectories. In:Proc. of the Int'l Conf. on World Wide Web. ACM Press, 2009. 791-800.[doi:10.1145/1526709.1526816]
    [35] Tiwari S, Kaushik S. Popularity estimation of interesting locations from visitor'strajectories using fuzzy inference system. Open Computer Science, 2016,6(1):8-24.[doi:10.1515/comp-2016-0002]
    [36] Jensen CS, Tradišauskas N. Map matching. In:Proc. of the Encyclopedia of Database Systems. 2009. 1692-1696.[doi:10.1007/978-0-387-39940-9_215]
    [37] Yin H, Wolfson O. A weight-based map matching method in moving objects databases. In:Proc. of the SSDBM Conf. 2004,16:437-438.[doi:10.1109/SSDM.2004.1311248]
    [38] Greenfeld JS. Matching GPS observations to locations on a digital map. In:Proc. of the Transportation Research Board 81st Annual Meeting. 2002. https://trid.trb.org/view.aspx?id=711583
    [39] Quddus MA, Noland RB, Ochieng WY. A high accuracy fuzzy logic based map matching algorithm for road transport. Journal of Intelligent Transportation Systems, 2006,10(3):103-115.[doi:10.1080/15472450600793560]
    [40] Zampella F, Jimenez Ruiz AR, Seco Granja F. Indoor positioning using efficient map matching, RSS measurements, and an improved motion model. IEEE Trans. on Vehicular Technology, 2015,64(4):1304-1317.[doi:10.1109/TVT.2015.2391296]
    [41] Chen BY, Yuan H, Li QQ, Shaw SL. Map-Matching algorithm for large-scale low-frequency floating car data. Int'l Journal of Geographical Information Science, 2014,28(1):22-38.[doi:10.1080/13658816.2013.816427]
    [42] Abdallah F, Nassreddine G, Denoeux T. A multiple-hypothesis map-matching method suitable for weighted and box-shaped state estimation for localization. IEEE Trans. on Intelligent Transportation Systems, 2011,12(4):1495-1510.[doi:10.1109/TITS.2011. 2160856]
    [43] Fouque C, Bonnifait P. Matching raw GPS measurements on a navigable map without computing a global position. IEEE Trans. on Intelligent Transportation Systems, 2012,13(2):887-898.[doi:10.1109/TITS.2012.2186295]
    [44] Deng K, Xie K, Zheng K, Zhou X. Trajectory indexing and retrieval. In:Proc. of the Computing with Spatial Trajectories. New York:Springer-Verlag, 2011. 35-59.[doi:10.1007/978-1-4614-1629-6_2]
    [45] Chen L, Özsu T, Oria V. Robust and fast similarity search for moving object trajectories. In:Proc. of the SIGMOD. ACM Press, 2005. 491-502.[doi:10.1145/1066157.1066213]
    [46] Tao Y, Papadias D, Shen Q. Continuous reverse nearest neighbor search. In:Proc. of the 28th Int'l Conf. on Very Large Data Bases. 2002. 287-298. http://dl.acm.org/citation.cfm?id=1287369.1287395
    [47] Frentzos E, Gratsias K, Pelekis N, Theodoridis Y. Algorithms for nearest neighbor search on moving object trajectories. Geoinformatica, 2007,11(2):159-193.[doi:10.1007/s10707-006-0007-7]
    [48] Lee J G, Han J, Whang KY. Trajectory clustering:A partition-and-group framework. In:Proc. of the ACM SIGMOD Int'l Conf. on Management of Data. ACM Press, 2007. 593-604.[doi:10.1145/1247480.1247546]
    [49] Agrawal R, Faloutsos C, Swami A. Efficient similarity search in sequence databases. In:Proc. of the Int'l Conf. on Data Organazation. 1993,730:69-84.[doi:10.1007/3-540-57301-1_5]
    [50] Vries GD, Someren MV. Clustering vessel trajectories with alignment kernels under trajectory compression. In:Proc. of the Machine Learning and Knowledge Discovery in Databases. Berlin, Heidelberg:Springer-Verlag, 2010. 296-311.[doi:10.1007/978-3-642-15880-3_25]
    [51] Chen ZB, Shen HT, Zhou XF, Zheng Y, Xie X. Searching trajectories by locations:An efficiency study. In:Proc. of the Int'l Conf. on Special Interest Group on Management of Data. Association for Computing Machinery, 2010. 255-266.[doi:10.1145/1807167. 1807197]
    [52] Zhu Q, Gong J, Zhang Y. An efficient 3D R-tree spatial index method for virtual geographic environments. ISPRS Journal of Photogrammetry & Remote Sensing, 2007,62(3):217-224.[doi:10.1016/j.isprsjprs.2007.05.007]
    [53] Pfoser D, Jensen CS, Theodoridis Y. Novel approaches to the indexing of moving object trajectories. In:Proc. of the VLDB. 2000. 395-406. https://pdfs.semanticscholar.org/928c/82d0cf89d3d80e247fe56ab92e271d77540b.pdf
    [54] Jae LE, Ryu KH, Nam KW. Indexing for Efficient Managing Current and Past Trajectory of Moving Object Advanced Web Technologies and Applications. Berlin, Heidelberg:Springer-Verlag, 2004. 782-787.[doi:10.1007/978-3-540-24655-8_85]
    [55] Bentley JL. Multidimensional binary search trees used for associative searching. Communications of the ACM, 1975,18(9):509-517.[doi:10.1145/361002.361007]
    [56] Corral A, Vassilakopoulos M, Manolopoulos Y. Algorithms for joining R-trees and linear region quadtrees. In:Proc. of the SSD Symp. 2010,1651:251-269.[doi:10.1007/3-540-48482-5_16]
    [57] Guttman A. R-Trees:A dynamic index structure for spatial searching. ACM SIGMOD Record, 1984,14(2):47-57.[doi:10.1145/971697.602266]
    [58] Theoderidis Y, Vazirgiannis M, Sellis T. Spatio-Temporal indexing for large multimedia applications. In:Proc. of the IEEE Int'l Conf. on Multimedia Computing and Systems. IEEE, 1996. 441-448.[doi:10.1109/MMCS.1996.535011]
    [59] Abraham T, Roddick JF. Survey of spatio-temporal databases. GeoInformatica, 1999,3(1):61-99.[doi:10.1023/A:1009800916313]
    [60] Theodoridis Y, Sellis T, Papadopoulos AN, Manolopoulos Y. Specifications for efficient indexing in spatiotemporal databases. In:Proc. of the 10th Int'l Conf. on Scientific and Statistical Database Management. IEEE, 1998. 123-132.[doi:10.1109/SSDM.1998. 688117]
    [61] Nascimento MA, Silva JRO. Towards historical R-trees. In:Proc. of the '98 ACM Symp. on Applied Computing. ACM Press, 1998. 235-240.[doi:10.1145/330560.330692]
    [62] Tao Y, Papadias D. Efficient historical R-trees. In:Proc. of the 13th Int'l Conf. on Scientific and Statistical Database Management (SSDBM 2001). IEEE, 2001. 223-232.[doi:10.1109/SSDM.2001.938554]
    [63] Tao Y, Papadias D. MV3R-Tree:A spatio-temporal access method for timestamp and interval queries. In:Proc. of the 27th Int'l Conf. on Very Large Data Bases (VLDB 2001). Roma, 2001. 431-440. http://dl.acm.org/citation.cfm?id=645927.672363
    [64] Chakka VP, Everspaugh AC, Patel JM. Indexing large trajectory data sets with SETI. Ann Arbor, 2003,1001(48109-2122):12.
    [65] Zhou P, Zhang D, Salzberg B, Cooperman G, Kollios G. Close pair queries in moving object databases. In:Proc. of the ACM Int'l Workshop on Geographic Information Systems (ACM-Gis 2005). Bremen, 2005. 2-11.[doi:10.1145/1097064.1097067]
    [66] Lomet D, Salzberg B. The performance of a multiversion access method. ACM SIGMOD Record, 1990,19(2):353-363.[doi:10. 1145/93597.98744]
    [67] Gudmundsson J. Computing longest duration flocks in trajectory data. In:Proc. of the 14th ACM Int'l Symp. on Geographic Information Systems (ACM-GIS 2006). Arlington, 2006. 35-42.[doi:10.1145/1183471.1183479]
    [68] Jeung H, Yiu ML, Zhou X, Jensen CS, Shen HT. Discovery of convoys in trajectory databases. Proc. of the VLDB Endowment, 2010,1(1):1068-1080.[doi:10.14778/1453856.1453971]
    [69] Li Z, Ding B, Han J, Kays R. Swarm:Mining relaxed temporal moving object clusters. Proc. of the VLDB Endowment, 2010,3(1):723-734.[doi:10.14778/1920841.1920934]
    [70] Zhou X. Online discovery of gathering patterns over trajectories. In:Proc. of the 2013 IEEE 29th Int'l Conf. on Data Engineering (ICDE). IEEE Computer Society, 2013. 242-253.[doi:10.1109/TKDE.2013.160]
    [71] Tang LA, Zheng Y, Yuan J, Han J. A framework of traveling companion discovery on trajectory data streams. ACM Trans. on Intelligent Systems & Technology, 2013,5(1):992-999.[doi:10.1145/2542182.2542185]
    [72] Giannotti F, Nanni M, Predreschi D, Pinelli F. Trajectory pattern mining. In:Proc. of the 13th ACM SIGKDD Int'l Conf. on Knowledge Discovery and Data Mining. San Jose:ACM Press, 2007. 330-339.[doi:10.1145/1281192.1281230]
    [73] Ye Y, Zheng Y, Chen Y, Feng J, Xie X. Mining individual life pattern based on location history. In:Proc. of the 10th Int'l Conf. on Mobile Data Management:Systems, Services and MIDDLEWARE. IEEE Computer Society, 2009. 1-10.[doi:10.1109/MDM. 2009.11]
    [74] Monreale A, Pinelli F, Trasarti R, Giannotti F. WhereNext:A location predictor on trajectory pattern mining. In:Proc. of the ACM SIGKDD Int'l Conf. on Knowledge Discovery and Data Mining. Paris, 2009. 637-646.[doi:10.1145/1557019.1557091]
    [75] Xiao X, Zheng Y, Luo Q, Xie X. Inferring social ties between users with human location history. Journal of Ambient Intelligence & Humanized Computing, 2014,5(1):3-19.[doi:10.1007/s12652-012-0117-z]
    [76] Lv M, Chen L, Chen G. Mining user similarity based on routine activities. Information Sciences, 2013,236:17-32.[doi:10.1016/j.ins.2013.02.050]
    [77] Cao H, Mamoulis N, Cheung DW. Mining frequent spatio-temporal sequential patterns. In:Proc. of the ICDM. 2005. 82-89.[doi:10.1109/ICDM.2005.95]
    [78] Chen Z, Shen HT, Zhou X. Discovering popular routes from trajectories. In:Proc. of the IEEE Int'l Conf. on Data Engineering. IEEE Computer Society, 2011. 900-911.[doi:10.1109/ICDE.2011.5767890]
    [79] Srikant R, Agrawal R. Mining sequential patterns:Generalizations and performance improvements. In:Proc. of the Advances in Database Technology (EDBT'96). Berlin, Heidelberg:Springer-Verlag, 1996. 1-17.[doi:10.1007/BFb0014140]
    [80] Pei J, Han J, Mortazavi-Asl B, Pinto H. PrefixSpan:Mining sequential patterns efficiently by prefix-projected pattern growth. In:Proc. of the Int'l Conf. on Data Engineering. IEEE Computer Society, 2001. 215-224.[doi:10.1109/ICDE.2001.914830]
    [81] Ozden B, Ramaswamy S, Silberschatz A. Cyclic association rules. In:Proc. of the IEEE Int'l Conf. on Data Engineering. IEEE, 1998. 412-421.[doi:10.1109/ICDE.1998.655804]
    [82] Han J, Dong G, Yin Y. Efficient mining of partial periodic patterns in time series database. In:Proc. of the Int'l Conf. on Data Engineering. 1999. 106-115.[doi:10.1109/ICDE.1999.754913]
    [83] Lee G, Yang W, Lee JM. A parallel algorithm for mining multiple partial periodic patterns. Information Sciences, 2006,176(24):3591-3609.[doi:10.1016/j.ins.2006.02.010]
    [84] Yang J, Wang W, Yu PS. Minning asynchronous periodic patterns in time series data. In:Proc. of the ACM SIGKDD Int'l Conf. on Knowledge Discovery and Data Mining. ACM Press, 2000. 275-279.[doi:10.1145/347090.347150]
    [85] Huang KY, Chang CH. SMCA:A general model for mining asynchronous periodic patterns in temporal databases. IEEE Trans. on Knowledge & Data Engineering, 2005,17(6):774-785.[doi:10.1109/TKDE.2005.98]
    [86] Yang J, Wang W, Yu PS. Minning surprising periodic patterns. Data Mining & Knowledge Discovery, 2004,9(2):189-216.[doi:10.1023/B:DAMI.0000031631.84034.af]
    [87] Yang J, Wang W, Yu PS. InfoMiner+:Minning partial periodic patterns with gap penalties. In:Proc. of the 2013 IEEE 13th Int'l Conf. on Data Mining. IEEE Computer Society, 2002. 725-728.[doi:10.1109/ICDM.2002.1184039]
    [88] Li Z, Wang J, Han J. Mining event periodicity from incomplete observations. IEEE Trans. on Knowledge & Data Engineering, 2015,27(5):444-452.[doi:10.1145/2339530.2339604]
    [89] Faloutsos C, Ranganathan M, Manolopoulos Y. Fast subsequence matchingin time-series databases. In:Proc. of the ACM SIGMOD Int'l Conf. on Management of Data. 1994. 419-429.[doi:10.1145/191843.191925]
    [90] Chan KP, Fu WC. Efficient time series matching by wavelets. In:Proc. of the IEEE Int'l Conf. on Data Engineering. IEEE, 1999. 126-133.[doi:10.1109/ICDE.1999.754915]
    [91] Elnekave S, Last M, Maimon O. Incremental clustering of mobile objects. In:Proc. of the IEEE Int'l Conf. on Data Engineering Workshop. IEEE, 2007. 585-592.[doi:10.1109/ICDEW.2007.4401044]
    [92] Ankerst M, Breunig MM, Kriegel HP, Sander J. OPTICS:Ordering points to identify the clustering structure. In:Proc. of the ACM SIGMOD Int'l Conf. on Management of Data (SIGMOD '99). Philadelphia, 1999. 49-60.[doi:10.1145/304181.304187]
    [93] Gao Y, Zheng B, Chen G, Li Q. Algorithms for constrained k-nearest neighbor queries over moving object trajectories. Geoinformatica, 2010,14(2):241-276.[doi:10.1007/s10707-009-0084-5]
    [94] Gudmundsson J, Valladares N. A GPU approach to subtrajectory clustering using the Fréchet distance. IEEE Trans. on Parallel & Distributed Systems, 2015,26(4):924-937.[doi:10.1109/TPDS.2014.2317713]
    [95] Yuan G, Sun P, Zhao J, Li D, Wang C. A review of moving object trajectory clustering algorithms. In:Proc. of the Artificial Intelligence Review. 2016. 1-22.[doi:10.1007/s10462-016-9477-7]
    [96] Cai ZF, Yang HX, Shuang W, Xu J, Wei WM, Na WL. A clustering-based privacy-preserving method for uncertain trajectory data. In:Proc. of the 2014 IEEE 13th Int'l Conf. on Trust, Security and Privacy in Computing and Communications. IEEE, 2014. 1-8.[doi:10.1109/TrustCom.2014.5]
    [97] Xiao X, Zheng Y, Luo Q, Xie X. Finding similar users using category-based location history. In:Proc. of the Sigspatial Int'l Conf. on Advances in Geographic Information Systems. ACM Press, 2010. 442-445.[doi:10.1145/1869790.1869857]
    [98] Ying JC, Lee WC, Weng TC, Tseng VS. Semantic trajectory mining for location prediction. In:Proc. of the ACM Sigspatial Int'l Symp. on Advances in Geographic Information Systems (ACM-Gis 2011). Chicago, 2011. 34-43.[doi:10.1145/2093973.2093980]
    [99] Liu S, Liu Y, Ni LM, Fan J, Li M. Towards mobility-based clustering. In:Proc. of the 16th ACM SIGKDD Int'l Conf. on Knowledge Discovery and Data Mining. ACM Press, 2010. 919-928.[doi:10.1145/1835804.1835920]
    [100] Kim J, Mahmassani HS. Spatial and temporal characterization of travel patterns in a traffic network using vehicle trajectories. Transportation Research Part C Emerging Technologies, 2015,9:164-184.[doi:10.1016/j.trpro.2015.07.010]
    [101] Han B, Liu L, Omiecinski E. NEAT:Road network aware trajectory clustering. In:Proc. of the IEEE Int'l Conf. on Distributed Computing Systems. 2012. 142-151.[doi:10.1109/ICDCS.2012.31]
    [102] Bashir FI, Khokhar AA, Schonfeld D. Object trajectory-based activity classification and recognition using hidden Markov models. IEEE Trans. on Image Processing, 2007,16(7):1912-1919.[doi:10.1109/TIP.2007.898960]
    [103] Nascimento JC, Figueiredo MAT, Marques JS. Trajectory classification using switched dynamical hidden Markov models. IEEE Trans. on Image Processing, 2010,19(5):1338-1348.[doi:10.1109/TIP.2009.2039664]
    [104] Mlích J, Chmelař P. Trajectory classification based on hidden Markov models. In:Proc. of the 18th Int'l Conf. on Computer Graphics and Vision. 2008. 101-105. http://graphicon.ru/html/2008/proceedings/English/S5/Paper_1.pdf
    [105] Sun S, Zhao J, Gao Q. Modeling and recognizing human trajectories with Beta process hidden Markov models. Pattern Recognition, 2015,48(8):2407-2417.[doi:10.1016/j.patcog.2015.02.028]
    [106] Yin J, Chai X, Yang Q. High-Level goal recognition in a wireless LAN. In:Proc. of the 19th National Conf. on Artificial Intelligence, 16th Conf. on Innovative Applications of Artificial Intelligence. San Jose, 2004. 578-584. http://dl.acm.org/citation.cfm?id=1597148.1597242
    [107] Santos L, Khoshhal K, Dias J. Trajectory-Based human action segmentation. Pattern Recognition, 2015,48(2):568-579.[doi:10.1016/j.patcog.2014.08.015]
    [108] Liao L, Patterson DJ, Fox D, Kautz H. Learning and inferring transportation routines. Artificial Intelligence, 2007,171(5-6):311-331.[doi:10.1016/j.artint.2007.01.006]
    [109] Abidine MB, Fergani B. Evaluating C-SVM, CRF and LDA classification for daily activity recognition. In:Proc. of the Int'l Conf. on Multimedia Computing and Systems. 2012. 272-277.[doi:10.1109/ICMCS.2012.6320300]
    [110] Chow CY, Mokbel MF. Privacy of spatial trajectories. In:Proc. of the Computing with Spatial Trajectories. New York:Springer-Verlag, 2011. 109-138.[doi:10.1007/978-1-4614-1629-6_4]
    [111] Motwani R, Xu Y. Efficient algorithms for masking and finding quasi-identifiers. In:Proc. of the Conf. on Very Large Data Bases (VLDB). 2007. 83-93. http://theory.stanford.edu/~xuying//papers/quasi_vldb1.pdf
    [112] Sweeney L. k-ANONYMITY:A model for protecting privacy. Int'l Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 2008,10(5):557-570.[doi:10.1142/S0218488502001648]
    [113] Machanavajjhala A, Kifer D, Gehrke J, Venkitasubramaniam M. l-Diversity:Privacy beyond k-anonymity. ACM Trans. on Knowledge Discovery from Data (TKDD), 2007,1(1):3.[doi:10.1145/1217299.1217302]
    [114] Li N, Li T, Venkatasubramanian S. t-Closeness:Privacy beyond k-anonymity and l-diversity. In:Proc. of the IEEE Int'l Conf. on Data Engineering. IEEE, 2007. 106-115.[doi:10.1109/ICDE.2007.367856]
    [115] Kido H, Yanagisawa Y, Satoh T. An anonymous communication technique using dummies for location-based services. In:Proc. of the Int'l Conf. on Pervasive Services (ICPS 2005). 2005. 88-97.[doi:10.1109/PERSER.2005.1506394]
    [116] Yiu ML, Jensen CS, Huang X, Lu H. Spacetwist:Managing the trade-offs among location privacy, query performance, and query accuracy in mobile services. In:Proc. of the IEEE Int'l Conf. on Data Engineering. IEEE, 2008. 366-375.[doi:10.1109/ICDE. 2008.4497445]
    [117] Khoshgozaran A, Shahabi C. Blind evaluation of nearest neighbor queries using space transformation to preserve location privacy. Bioscience Reports, 2010,17(4):239-257.[doi:10.1007/978-3-540-73540-3_14]
    [118] Chow CY, Mokbel MF, He T. A privacy-preserving location monitoring system for wireless sensor networks. IEEE Trans. on Mobile Computing, 2010,10(1):94-107.[doi:10.1109/TMC.2010.145]
    [119] Nergiz ME, Atzori M, Saygin Y. Towards trajectory anonymization:A generalization-based approach. In:Proc. of the SIGSPATIAL ACM GIS 2008 Int'l Workshop on Security and Privacy in GIS and LBS. ACM Press, 2008. 52-61.[doi:10.1145/1503402.1503413]
    [120] Lee KCK, Lee WC, Leong HV, Zheng B. Navigational path privacy protection:Navigational path privacy protection. In:Proc. of the ACM Conf. on Information and Knowledge Management (CIKM 2009). Hong Kong, 2009. 691-700.[doi:10.1145/1645953. 1646041]
    [121] Pingley A, Zhang N, Fu X, Choi HA, Subrammanianm S, Zhao W. Protection of query privacy for continuous location based services. Proc. of the IEEE INFOCOM, 2011,8(1):1710-1718.[doi:10.1109/infcom.2011.5934968]
    [122] Xu T, Cai Y. Exploring historical location data for anonymity preservation in location-based services. In:Proc. of the Dissertations & Theses-Gradworks. 2008. 547-555.[doi:10.1109/infocom.2007.103]
    [123] Hoh B, Gruteser M. Protecting location privacy through path confusion. In:Proc. of the Int'l Conf. on Security and Privacy for Emerging Areas in Communications Networks (SECURECOMM). 2005. 194-205.[doi:10.1109/securecomm.2005.33]
    [124] Gidofalvi G, Huang X, Pedersen TB. Privacy-Preserving data mining on moving object trajectories. In:Proc. of the Int'l Conf. on Mobile Data Management. IEEE, 2007. 60-68.[doi:10.1109/mdm.2007.18]
    [125] Xu T, Cai Y. Feeling-Based location privacy protection for location-based services. In:Proc. of the ACM Conf. on Computer and Communications Security (CCS 2009). Chicago, 2009. 348-357.[doi:10.1145/1653662.1653704]
    [126] Duckham M, Kulik L. A formal model of obfuscation and negotiation for location privacy. Lecture Notes in Computer Science, 2010,3468:152-170.[doi:10.1007/11428572_10]
    [127] Gruteser M, Liu X. Protecting privacy in continuous location-tracking applications. IEEE Security & Privacy Magazine, 2004,2(2):28-34.[doi:10.1109/MSECP.2004.1281242]
    [128] Beresford AR, Stajano F. Location privacy in pervasive computing. IEEE Pervasive Computing, 2003,2(1):46-55.[doi:10.1109/mprv.2003.1186725]
    [129] Palanisamy B, Ling L. MobiMix:Protecting location privacy with mix-zones over road networks. In:Proc. of the 2011 IEEE 27th Int'l Conf. on Data Engineering (ICDE). Hannover, 2011. 494-505.[doi:10.1109/icde.2011.5767898]
    [130] Gao S, Ma J, Shi W, Zhan G. TrPF:A trajectory privacy-preserving framework for participatory sensing. IEEE Trans. on Information Forensics and Security, 2013,8(6):874-887.[doi:10.1109/tifs.2013.2252618]
    [131] You TH, Peng WC, Lee WC. Protecting moving trajectories with dummies. In:Proc. of the Int'l Conf. on Mobile Data Management. IEEE, 2007. 278-282.[doi:10.1109/mdm.2007.58]
    [132] Poulis G, Skiadopoulos S, Loukides G, et al. Distance-Based km-anonymization of trajectory data. In:Proc. of the IEEE Int'l Conf. on Mobile Data Management. 2013. 57-62.[doi:10.1109/MDM.2013.66]
    [133] Abul O, Bonchi F, Nanni M. Never walk alone:Uncertainty for anonymity in moving objects databases. In:Proc. of the 2008 IEEE 24th Int'l Conf. on Data Engineering. IEEE Computer Society, 2008. 376-385.[doi:10.1109/icde.2008.4497446]
    [134] Terrovitis M, Mamoulis N. Privacy preservation in the publication of trajectories. In:Proc. of the Int'l Conf. on Mobile Data Management. 2008. 65-72.[doi:10.1109/mdm.2008.29]
    [135] Hoh B, Gruteser M, Xiong H, Alrabady A. Achieving guaranteed anonymity in GPS traces via uncertainty-aware path cloaking. IEEE Trans. on Mobile Computing, 2010,9(8):1089-1107.[doi:10.1109/tmc.2010.62]
    [136] Gkoulalas-Divanis A, Verykios VS. Association Rule Hiding for Data Mining. Springer-Verlag, 2010. 41.[doi:10.1007/978-1-4419-6569-1]
    [137] Atallah M, Elmagarmid A, Ibrahim M, Bertino E, Verykios V. Disclosure limitation of sensitive rules. In:Proc. of the Workshop on Knowledge & Data Engineering Exchange. IEEE, 1999. 45-52.[doi:10.1109/kdex.1999.836532]
    [138] Aydin B, Akkineni V, Angryk RA. Modeling and indexing spatiotemporal trajectory data in non-relational databases. Managing Big Data in Cloud Computing Environments, 2016,6:133-163.
    [139] Ke S, Gong J, Li S, Zhu Q, Liu X, Zhang Y. A hybrid spatio-temporal data indexing method for trajectory databases. Sensors, 2014, 14(7):12990-13005.[doi:10.3390/s140712990]
    [140] Boulmakoul A, Karim L, Laarabi MH, Sacile R, Garbolino E. MongoDB-Hadoop distributed and scalable framework for spatio-temporal hazardous materials data warehousing. In:Proc. of the 7th Int'l Congress on Environmental Modelling and Software. 2014. 2255-2262. http://www.iemss.org/sites/iemss2014/papers/iemss2014_submission_43.pdf
    [141] Zhang N, Zheng G, Chen H, Chen J, Chen X. Hbasespatial:A scalable spatial data storage based on hbase. In:Proc. of the 2014 IEEE 13th Int'l Conf. on Trust, Security and Privacy in Computing and Communications. IEEE, 2014. 644-651.[doi:10.1109/trustcom.2014.83]
    [142] Wang H, Zheng K, Xu J, Zheng B, Zhou X, Sadig S. SharkDB:An in-memory column-oriented trajectory storage. In:Proc. of the ACM Int'l Conf. on Information and Knowledge Management. ACM Press, 2014. 1409-1418.[doi:10.1145/2661829.2661878]
    [143] Xia D, Wang B, Li Y, Rong Z, Zhang Z. An efficient MapReduce-based parallel clustering algorithm for distributed traffic subarea division. Discrete Dynamics in Nature & Society, 2015,2015(6018):1-18.[doi:10.1155/2015/793010]
    [144] Nguyen CD, Nguyen DT, Pham VH. Parallel two-phase K-means. In:Proc. of the Computational Science and its Applications (ICCSA 2013). Berlin, Heidelberg:Springer-Verlag, 2013. 224-231.[doi:10.1007/978-3-642-39640-3_16]
    [145] Hu C, Kang X, Luo N, Zhao Q. Parallel clustering of big data of spatio-temporal trajectory. In:Proc. of the 11th Int'l Conf. on Natural Computation (ICNC). IEEE, 2015. 769-774.[doi:10.1109/icnc.2015.7378088]
    [146] He Y, Tan H, Luo W, Mao H, Ma D, Feng S, Fan J. MR-DBSCAN:An efficient parallel density-based clustering algorithm using MapReduce. In:Proc. of the 2011 IEEE 17th Int'l Conf. on Parallel and Distributed Systems. IEEE Computer Society, 2011. 473-480.[doi:10.1109/icpads.2011.83]
    [147] Jinno R, Seki K, Uehara K. Parallel distributed trajectory pattern mining using MapReduce. In:Proc. of the IEEE Int'l Conf. on Cloud Computing Technology and Science. 2012. 269-273.[doi:10.1109/cloudcom.2012.6427526]
    [148] Sun ZY, Tsai MC, Tsai HP. Mining uncertain sequence data on hadoop platform. In:Proc. of the Trends and Applications in Knowledge Discovery and Data Mining. Springer Int'l Publishing, 2014. 204-215.[doi:10.1007/978-3-319-13186-3_20]
    [149] Eldawy A, Mokbel MF. A demonstration of spatialHadoop:An efficient mapreduce framework for spatial data. Proc. of the VLDB Endowment, 2013,6(12):1230-1233.[doi:10.14778/2536274.2536283]
    [150] Huang P, Yuan B. Mining massive-scale spatiotemporal trajectories in parallel:A survey. In:Proc. of the Trends and Applications in Knowledge Discovery and Data Mining. Springer Int'l Publishing, 2015. 41-52.[doi:10.1007/978-3-319-25660-3_4]
    [151] Gowanlock M, Casanova H. Indexing of spatiotemporal trajectories for efficient distance threshold similarity searches on the GPU. In:Proc. of the 2015 IEEE Int'l Parallel and Distributed Processing Symp. (IPDPS). IEEE, 2015. 387-396.[doi:10.1109/ipdps. 2015.24]
    [152] You S, Zhang J, Gruenwald L. Parallel spatial query processing on GPUs using R-trees. In:Proc. of the ACM Sigspatial Int'l Workshop on Analytics for Big Geospatial Data. 2013. 23-31.[doi:10.1145/2534921.2534949]
    [153] Prasad SK, McDermott M, He X, Puri S. GPU-Based parallel R-tree construction and querying. In:Proc. of the 2015 IEEE Int'l Parallel and Distributed Processing Symp. Workshop (IPDPSW). IEEE, 2015. 618-627.[doi:10.1109/ipdpsw.2015.127]
    [154] Gudmundsson J, Valladares N. A GPU approach to subtrajectory clustering using the Fréchet distance. IEEE Trans. on Parallel & Distributed Systems, 2015,26(4):924-937.[doi:10.1109/tpds.2014.2317713]
    [155] Deng Z, Hu Y, Zhu M, Huang X, Du B. A scalable and fast OPTICS for clustering trajectory big data. Cluster Computing, 2015, 18(2):549-562.[doi:10.1007/s10586-014-0413-9]
    [156] Valladares Cereceda I. GPU parallel algorithms for reporting movement behaviour patterns in spatiotemporal databases. 2013. http://www.tdx.cat/handle/10803/119544
    [157] Sellarès JA. A parallel GPU-based approach for reporting flock patterns. Int'l Journal of Geographical Information Science, 2014, 28(9):1877-1903.[doi:10.1080/13658816.2014.902949]
    [158] Wang Z, Yuan X. Visual analysis of trajectory data. Jisuanji Fuzhu Sheji Yu Tuxingxue Xuebao/Journal of Computer-Aided Design and Computer Graphics, 2015,27(1):9-25(in Chinese with English abstract).
    [159] Guo H, Wang Z, Yu B, Zhao H, Yuan X. TripVista:Triple perspective visual trajectory analytics and its application on microscopic traffic data at a road intersection. In:Proc. of the IEEE Pacific Visualization Symp. (PACIFICVIS 2011). Hong Kong, 2011. 163-170.[doi:10.1109/pacificvis.2011.5742386]
    [160] Wang Z, Yuan X. Urban trajectory timeline visualization. In:Proc. of the Int'l Conf. on Big Data and Smart Computing. 2014. 13-18.[doi:10.1109/bigcomp.2014.6741397]
    [161] Bakshev S, Spinsanti L, Vidal C, Casanova MA. Trajectory semantic visualization. In:Proc. of the Int'l Conf. on Enterprise Information Systems (ICEIS 2011), Vol.1. Beijing, 2011. 326-332.
    [162] Von Landesberger T, Andrienko G, Andrienko N, et al. Visual analytics methods for categoric spatio-temporal data. In:Proc. of the Visual Analytics Science and Technology. IEEE, 2012. 183-192.[doi:10.1109/vast.2012.6400553]
    [163] Li J, Zhang K, Meng ZP. Vismate:Interactive visual analysis of station-based observation data on climate changes. In:Proc. of the Visual Analytics Science and Technology. IEEE, 2015. 133-142.[doi:10.1109/vast.2014.7042489]
    [164] Ferreira N, Poco J, Vo HT, Freire J, Silva CT. Visual exploration of big spatio-temporal urban data:A study of New York city taxi trips. IEEE Trans. on Visualization & Computer Graphics, 2013,19(12):2149-58.[doi:10.1109/tvcg.2013.226]
    [165] Boyandin I, Bertini E, Bak P, Lalanne D. Flowstrates:An approach for visual exploration of temporal origin-destination data. Computer Graphics Forum, 2011,30(3):971-980.[doi:10.1111/j.1467-8659.2011.01946.x]
    [166] Spretke D, Stein M, Sharalieva L, Warta A, Licht V, Schreck T, Keim DA. Visual analysis of car fleet trajectories to find representative routes for automotive research. In:Proc. of the 19th Int'l Conf. on Information Visualisation. IEEE, 2015. 322-329.[doi:10.1109/iv.2015.63]
    [167] Lu M, Lai C, Ye T, Liang J. Visual analysis of route choice behaviour based on GPS trajectories. In:Proc. of the IEEE Conf. on Visual Analytics Science and Technology. IEEE Computer Society, 2015. 203-204.[doi:10.1109/VAST.2015.7347679]
    [168] Landesberger TV, Bremm S, Schreck T, Fellner DW. Feature-Based automatic identification of interesting data segments in group movement data. Information Visualization, 2014,13(3):190-212.[doi:10.1177/1473871613477851]
    [169] Lu S, Braunstein SL. Quantum decision tree classifier. Quantum Information Processing, 2014,13(3):757-770.[doi:10.1007/s11128-013-0687-5]
    [170] Aïmeur E, Brassard G, Gambs S. Machine learning in a quantum world. Lecture Notes in Computer Science, 2014,4013:431-442.[doi:10.1007/11766247_37]
    [171] Lloyd S, Mohseni M, Rebentrost P. Quantum algorithms for supervised and unsupervised machine learning. arXiv preprint arXiv:1307.0411, 2013.
    [172] Wiebe N, Kapoor A, Svore K. Quantum nearest-neighbor algorithms for machine learning. arXiv preprint arXiv:1401.2142, 2014.
    [173] Li Q, Jiang JP. Quantum K nearest neighbor algorithm. System Engineering and Electronics, 2008,30(5):940-943(in Chinese with English abstract).
    [174] Chen HW, Gao Y, Zhang J. Quantum K-nearest neighbor algorithm. Journal of Southeast University (Natual Science Edition), 2015, 45(4):647-651(in Chinese with English abstract).[doi:10.3969/j.issn.1001-0505.2015.04.006]
    [175] Schuld M, Sinayskiy I, Petruccione F. An introduction to quantum machine learning. Contemporary Physics, 2014,56(2):172-185.[doi:10.1080/00107514.2014.964942]
    [176] Monras A, Beige A, Wiesner K. Hidden quantum Markov models and non-adaptive read-out of many-body states. arXiv preprint arXiv:1002.2337, 2010.
    [177] Aïmeur E, Brassard G, Gambs S. Quantum clustering algorithms. In:Proc. of the 24th Int'l Conf. on Machine Learning. 2007. 1-8.[doi:10.1145/1273496.1273497]
    [178] Aïmeur E, Brassard G, Gambs S. Quantum speed-up for unsupervised learning. Machine Learning, 2013,90(2):261-287.[doi:10.1007/s10994-012-5316-5]
    [179] Horn D, Gottlieb A.The method of quantum clustering. In:Proc. of the Neural Information Processing Systems. 2002. 769-776. http://papers.nips.cc/paper/2083-the-method-of-quantum-clustering.pdf
    [180] Horn D, Gottlieb A. Algorithm for data clustering in pattern recognition problems based on quantum mechanics. Physical Review Letters, 2002,88(1):261-268.[doi:10.1103/physrevlett.88.018702]
    [181] Yu CH, Gao F, Wang QL, Wen QY. Quantum algorithm for association rules mining. In:Proc. of the Int'l Workshop on Intelligent Systems & Applications. 2015. 1-4. http://link.aps.org/doi/10.1103/PhysRevA.94.042311
    [182] Ying S, Ying M, Feng Y. Quantum privacy-preserving data mining. arXiv preprint arXiv:1512.04009, 2015.
    [183] Narayanan A, Moore M. Quantum-Inspired genetic algorithms. In:Proc. of the IEEE Int'l Conf. on Evolutionary Computation. IEEE, 1996. 61-66.[doi:10.1109/icec.1996.542334]
    [184] Han KH, Kim JH. Genetic quantum algorithm and its application to combinatorial optimization problem. In:Proc. of the 2000 Congress on Evolutionary Computation, Vol.2. IEEE, 2003. 1354-1360.[doi:10.1109/cec.2000.870809]
    [185] Tao J, Sun Q, Zhu E, Chen Z. Quantum genetic algorithm based homing trajectory planning of Parafoil system. In:Proc. of the 34th Chinese Control Conf. (CCC). IEEE, 2015. 2523-2528.[doi:10.1109/chicc.2015.7260028]
    [186] Kennedy J, Eberhart R. Particle swarm optimization. In:Proc. of the IEEE Int'l Conf. on Neural Networks, Vol.4. 1995. 1942-1948.[doi:10.1109/ICNN.1995.488968]
    [187] Juang CF, Hsiao CM, Hsu CH. Hierarchical cluster-based multispecies particle-swarm optimization for fuzzy-system optimization. IEEE Trans. on Fuzzy Systems, 2010,18(1):14-26.[doi:10.1109/tfuzz.2009.2034529]
    [188] Xue B, Zhang M, Browne WN. Particle swarm optimization for feature selection in classification:A multi-objective approach. IEEE Trans. on Cybernetics, 2013,43(6):1656-1671.[doi:10.1109/tsmcb.2012.2227469]
    [189] Sun J, Feng B, Xu W. Particle swarm optimization with particles having quantum behavior. In:Proc. of the Congress on Evolutionary Computation (CEC 2004). IEEE, 2004. 1571-1580.[doi:10.1109/cec.2004.1330875]
    [190] Zhang X, Wang J, Du H, Yang T, Liu Y. A quantum particle swarm optimization used for spatial clustering with obstacles constraints. In:Proc. of the Int'l Conf. on Artificial Intelligence and Computational Intelligence. IEEE, 2009. 424-433.[doi:10.1007/978-3-642-04020-7_45]
    [191] Perozzi B, Al-Rfou R, Skiena S. Deepwalk:Online learning of social representations. In:Proc. of the 20th ACM SIGKDD Int'l Conf. on Knowledge Discovery and Data Mining. ACM Press, 2014. 701-710.[doi:10.1145/2623330.2623732]
    [192] Liu Q, Wu S, Wang L, Tan T. Predicting the next location:A recurrent model with spatial and temporal contexts. In:Proc. of the 30th AAAI Conf. on Artificial Intelligence. 2016. http://dl.acm.org/citation.cfm?id=3015812.3015841
    [193] Yang C, Sun M, Zhao WX, Liu ZY. A neural network approach to joint modeling social networks and mobile trajectories. arXiv preprint arXiv:1606.08154, 2016.
    附中文参考文献:
    [1] 许佳捷,郑凯,池明旻,朱扬勇,禹晓辉,周晓方.轨迹大数据:数据、应用与技术现状.通信学报,2015,(12):97-105.[doi:10.11959/j.issn. 1000-436x.2015318]
    [7] 霍峥,孟小峰.轨迹隐私保护技术研究.计算机学报,2011,34(10):1820-1830.[doi:10.3724/SP.J.1016.2011.01820]
    [8] 张学军,桂小林,伍忠东.位置服务隐私保护研究综述.软件学报,2015,26(9):2373-2395. http://www.jos.org.cn/1000-9825/4857. htm[doi:10.13328/j.cnki.jos.004857]
    [10] 王书浩,龙桂鲁.大数据与量子计算.科学通报,2015(Z1):499-508.[doi:10.1360/N972014-00803]
    [158] 王祖超,袁晓如.轨迹数据可视分析研究.计算机辅助设计与图形学学报,2015(1):9-25.
    [173] 李强,蒋静坪.量子K最近邻算法.系统工程与电子技术,2008,30(5):940-943.[doi:10.3321/j.issn:1001-506X.2008.05.040]
    [174] 陈汉武,高越,张军.量子K-近邻算法.东南大学学报(自然科学版),2015,45(4):647-651.[doi:10.3969/j.issn.1001-0505.2015.04.006]
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

高强,张凤荔,王瑞锦,周帆.轨迹大数据:数据处理关键技术研究综述.软件学报,2017,28(4):959-992

复制
分享
文章指标
  • 点击次数:11807
  • 下载次数: 32621
  • HTML阅读次数: 7852
  • 引用次数: 0
历史
  • 收稿日期:2016-06-19
  • 最后修改日期:2016-10-14
  • 在线发布日期: 2016-11-26
文章二维码
您是第20541571位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号