一种面向团体的影响最大化方法
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金(61232002,61502347,61202033,61572376);中央高校基本科研业务费专项资金(2042015kf00 38)


Group-Based Method for Influence Maximization
Author:
Affiliation:

Fund Project:

National Natural Science Foundation of China (61232002, 61502347, 61202033, 61572376); Fundamental Research Funds for the Central Universities (2042015kf0038)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    影响最大化旨在从给定的社会网络中寻找出一组影响力最大的子集.现有工作大都在假设实体点(个人或博客等)影响关系已知的情况下,关注于分析单个实体点的影响力.然而在一些实际场景中,人们往往更关注区域或人群等这类团体的组合影响力,如户外广告、电视营销、疫情防控等.研究了影响力团体的选择问题:(1)基于团体的关联发现,建立了团体传播模型GIC(group independent cascade);(2)根据GIC模型,给出了贪心算法CGIM(cascade group influence maximization),搜索最具影响力的top-k团组合.在人工数据和真实数据上,实验验证了该方法的效果和效率.

    Abstract:

    Influence maximization aims at finding a set of influential individuals (i.e. users, blog etc.) in a social network. Most of the existing work focused on the influence of individuals under the hypothesis that the influence relationship between the individuals is known in advance. Nonetheless, it is often the case that groups (i.e. area, crowd etc.) are only natural targets of initial convincing attempts in many real-world scenarios, such as billboards, television marketing and plague prevention. In this paper, the problem of locating the most influential groups in a network is addressed. (1) Based on the discovery of the group associations, GIC (group independent cascade) model is proposed to simulate the influence propagation process at the group granularity. (2) A greedy algorithm called CGIM (cascade group influence maximization) is introduced to determine the top-k influential groups under GIC model. Experimental results on both synthetic and real datasets verify the effectiveness and efficiency of the presented method.

    参考文献
    相似文献
    引证文献
引用本文

张平,王黎维,彭智勇,岳昆,黄浩.一种面向团体的影响最大化方法.软件学报,2017,28(8):2161-2174

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2015-11-09
  • 最后修改日期:2016-03-18
  • 录用日期:
  • 在线发布日期: 2017-08-15
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号