基于重叠社区搜索的传播热点选择方法
作者:
基金项目:

国家重点基础研究发展计划(973)(2012CB316201);国家自然科学基金(61472070)


Approach for Hot Spread Node Selection Based on Overlapping Community Search
Author:
Fund Project:

National Program on Key Basic Research Project of China (973) (2012CB316201); National Natural Science Foundation of China (61472070)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [33]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    随着社交网络的蓬勃发展,信息传播问题由于具有广泛的应用前景而受到广泛关注,影响力最大化问题是信息传播中的一个研究热点.它致力于在信息传播过程开始之前选取能够使预期影响力达到最大的节点作为信息传播的初始节点,并且大多采用基于概率的模型,如独立级联模型等.然而,现有的影响力最大化解决方案大多认为信息传播过程是自动的,忽略了社交网站平台在信息传播过程中可以起到的作用.此外,基于概率的模型存在一些问题,如无法保障信息的有效传播、无法适应动态变化的网络结构等.因此,提出了一种基于重叠社区搜索的传播热点选择方法.该方法通过迭代式推广模型根据用户行为反馈逐步选择影响力最大化节点,使社交网站平台在信息传播过程中充分发挥控制作用.提出了一种基于重叠社区结构的方法来衡量节点影响力,根据这种衡量方式来选择传播热点.提出了解决该问题的两种精确算法(包括一种基本方法和一种优化方法)以及该问题的近似算法.通过大量实验验证了精确及近似算法的效率、近似算法的准确率以及迭代式传播热点选择方法的有效性.

    Abstract:

    With the development of social network, information diffusion problem has received a lot of attention because of its extensive application prospects, and influence maximization problem is a hot topic of information diffusion. Influence maximization aims at selecting nodes that maximize the expected influence as initial nodes of information diffusion, and most work on influence maximization adopts probabilistic models such as independent cascade model. However, most existing solutions of influence maximization view the information diffusion process as an automatic process, and ignore the role of social network websites during the process. Besides, the probabilistic models have some issues in that, for example, they cannot guarantee the information to be delivered effectively, and they cannot adapt the dynamic networks. To tackle the problem, this paper proposes an approach for hot spread node selection based on overlapping community search. This approach selects influence maximized nodes step by step through the iterative promotion model according to users' behavior feedback, and makes the social network websites play the controller's role during information diffusion process. The paper also proposes a new method to measure the influence of nodes based on overlapping community structure, and utilizes this information measure method to select hot spread nodes. Two exact algorithms are proposed including a basic algorithm and an optimized algorithm, as well as an approximate algorithm are presented. Comprehensive experiments demonstrate the performance and accuracy of both exact and approximate algorithms, and the effectiveness of the iterative hot spread node selection method.

    参考文献
    [1] Kempe D, Kleinberg J, Tardos E. Maximizing the spread of influence through a social network. In:Proc. of the 9th ACM SIGKDD Int'l Conf. on Knowledge Discovery and Data Mining. 2003. 137-146.[doi:10.1145/956750.956769]
    [2] Palla G, Derényi I, Farkas I, Vicsek T. Uncovering the overlapping community structure of complex networks in nature and society. Nature, 2005,435(7043):814-818.[doi:10.1038/nature03607]
    [3] Chen W, Wang Y, Yang S. Efficient influence maximization in social networks. In:Proc. of the 15th ACM SIGKDD Int'l Conf. on Knowledge Discovery and Data Mining. 2009. 199-208.[doi:10.1145/1557019.1557047]
    [4] Leskovec J, Krause A, Guestrin C, Faloutsos C, VanBriesen J, Glance N. Cost-Effective outbreak detection in networks. In:Proc. of the 13th ACM SIGKDD Int'l Conf. on Knowledge Discovery and Data Mining. 2007. 420-429.[doi:10.1145/1281192.1281239]
    [5] Chen W, Wang C, Wang Y. Scalable influence maximization for prevalent viral marketing in large-scale social networks. In:Proc. of the 16th ACM SIGKDD Int'l Conf. on Knowledge Discovery and Data Mining. 2010. 1029-1038.[doi:10.1145/1835804.1835934]
    [6] Jung K, Heo W, Chen W. Irie:Scalable and robust influence maximization in social networks. In:Proc. of the 12th Int'l Conf. on Data Mining. 2012. 918-923.[doi:10.1109/ICDM.2012.79]
    [7] Kim J, Kim SK, Yu H. Scalable and parallelizable processing of influence maximization for large-scale social networks? In:Proc. of the 29th Int'l Conf. on Data Engineering. 2013. 266-277.[doi:10.1109/ICDE.2013.6544831]
    [8] Liu B, Cong G, Xu D, Zeng Y. Time constrained influence maximization in social networks. In:Proc. of the 12th Int'l Conf. on Data Mining. 2012. 439-448.[doi:10.1109/ICDM.2012.158]
    [9] Cao JX, Dong D, Xu S, Zheng X, Liu B, Luo JZ. A k-core based algorithm for influence maximization in social networks. Ji Suan Ji Xue Bao/Journal of Computers, 2015,38(2):238-248(in Chinese with English abstract).[doi:10.3724/SP.J.1016.2015.00238]
    [10] Domingos P, Richardson M. Mining the network value of customers. In:Proc. of the 7th ACM SIGKDD Int'l Conf. on Knowledge Discovery and Data Mining. 2001. 57-66.[doi:10.1145/502512.502525]
    [11] Hartline J, Mirrokni V, Sundararajan M. Optimal marketing strategies over social networks. In:Proc. of the 17th Int'l Conf. on World Wide Web. 2008. 189-198.[doi:10.1145/1367497.1367524]
    [12] Mossel E, Roch S. Submodularity of influence in social networks:From local to global. Society for Industrial and Applied Mathematics Journal on Computing, 2010,39(6):2176-2188.[doi:10.1137/080714452]
    [13] Lin SY, Hu QB, Wang FJ, Yu PS. Steering information diffusion dynamically against user attention limitation. In:Proc. of the 2014 IEEE Int'l Conf. on Data Mining. 2014. 330-339.[doi:10.1109/ICDM.2014.131]
    [14] Tong GM, Wu WL, Tang SJ, Du DZ. Adaptive influence maximization in dynamic social networks. IEEE/ACM Trans. on Networking, 2016,PP(99):1-14.[doi:10.1109/TNET.2016.2563397]
    [15] Bakshy E, Eckles D, Yan R, Rosenn I. Social influence in social advertising:Evidence from field experiments. In:Proc. of the 13th ACM Conf. on Electronic Commerce. 2012. 146-161.[doi:10.1145/2229012.2229027]
    [16] Aslay C, Lu W, Bonchi F, Goyal A, Lakshmanan LVS. Viral marketing meets social advertising:Ad allocation with minimum regret. Proc. of the VLDB Endowment, 2015,8(7):814-825.[doi:10.14778/2752939.2752950]
    [17] Abbassi Z, Bhaskara A, Misra V. Optimizing display advertising in online social networks. In:Proc. of the 24th Int'l Conf. on World Wide Web. 2015. 1-11.[doi:10.1145/2736277.2741648]
    [18] Adamcsek B, Palla G, Farkas I J, Derényi I, Vicsek T. Cfinder:Locating cliques and overlapping modules in biological networks. Bioinformatics, 2006,22(8):1021-1023.[doi:10.1093/bioinformatics/btl039]
    [19] Ahn YY, Bagrow JP, Lehmann S. Link communities reveal multiscale complexity in networks. Nature, 2010,466(7307):761-764.[doi:10.1038/nature09182]
    [20] Evans T, Lambiotte R. Line graphs, link partitions, and overlapping communities. Physical Review E, 2009,80(1):No.016105.[doi:10.1103/PhysRevE.80.016105]
    [21] Lim S, Ryu S, Kwon S, Jung K, Lee JG. Linkscan*:Overlapping community detection using the link-space transformation. In:Proc. of the 30th Int'l Conf. on Data Engineering. 2014. 292-303.[doi:10.1109/ICDE.2014.6816659]
    [22] Gregory S. Finding overlapping communities in networks by label propagation. New Journal of Physics, 2010,12(10):No.103018.[doi:10.1088/1367-2630/12/10/103018]
    [23] Šubelj L, Bajec M. Unfolding communities in large complex networks:Combining defensive and offensive label propagation for core extraction. Physical Review E, 2011,83(3):No.036103.[doi:10.1103/PhysRevE.83.036103]
    [24] Hu Y, Wang CJ, Wu J, Xie JY, Li H. Overlapping community discovery and global representation on microblog network. Ruan Jian Xue Bao/Journal of Software, 2014,25(12):2824-2836(in Chinese with English abstract). http://www.jos.org.cn/1000-9825/4721.htm[doi:10.13328/j.cnki.jos.004721]
    [25] Ball B, Karrer B, Newman MEJ. An efficient and principled method for detecting communities in networks. Physical Review E, 2011,84(3):No.036103.[doi:10.1103/PhysRevE.84.036103]
    [26] Shen HW, Cheng XQ, Guo JF. Exploring the structural regularities in networks. Physical Review E, 2011,84(5):No.056111.[doi:10.1103/PhysRevE.84.056111]
    [27] Gopalan PK, Blei DM. Efficient discovery of overlapping communities in massive networks. Proc. of the National Academy of Sciences, 2013,110(36):14534-14539.[doi:10.1073/pnas.1221839110]
    [28] Sun BJ, Shen HW, Cheng XQ. Detecting overlapping communities in massive networks. Europhysics Letters, 2014,108(6):No. 68001.[doi:10.1209/0295-5075/108/68001]
    [29] Cui W, Xiao Y, Wang H, Lu Y, Wang W. Online search of overlapping communities. In:Proc. of the 2013 ACM SIGMOD Int'l Conf. on Management of Data. 2013. 277-288.[doi:10.1145/2463676.2463722]
    [30] Shan J, Shen DR, Nie TZ, Kou Y, Yu G. An efficient approach of overlapping communities search. In:Proc. of the 20th Int'l Conf. on Database Systems for Advanced Applications. 2015. 374-388.[doi:10.1007/978-3-319-18120-2_22]
    [31] Watts DJ, Strogatz SH. Collective dynamics of ‘small-world’ networks. Nature, 1998,393(6684):440-442.[doi:10.1038/30918]
    [9] 曹玖新,董丹,徐顺,郑啸,刘波,罗军舟.一种基于k-核的社会网络影响最大化算法.计算机学报,2015,38(2):238-248.[doi:10.3724/SP.J.1016.2015.00238]
    [24] 胡云,王崇骏,吴骏,谢俊元,李慧.微博网络上的重叠社群发现与全局表示.软件学报,2014,25(12):2824-2836. http://www.jos.org. cn/1000-9825/4721.htm[doi:10.13328/j.cnki.jos.004721]
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

单菁,申德荣,寇月,聂铁铮,于戈.基于重叠社区搜索的传播热点选择方法.软件学报,2017,28(2):326-340

复制
分享
文章指标
  • 点击次数:2688
  • 下载次数: 4429
  • HTML阅读次数: 1514
  • 引用次数: 0
历史
  • 收稿日期:2016-01-21
  • 最后修改日期:2016-04-25
  • 在线发布日期: 2017-01-24
文章二维码
您是第19828461位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号