基于运行时模型的混合云管理方法
作者:
基金项目:

国家自然科学基金(61402111,61222203);国家高技术研究发展计划(863)(2015AA01A202);福建科技重大项目(2015H6013);福建省科技平台建设项目(2014H2005)


Runtime Model Based Approach to Managing Hybrid Clouds
Author:
Fund Project:

National Natural Science Foundation of China (61402111, 61222203); National High-Tech R&D Program of China (863) (2015AA01A202); Major Science and Technology Project of Fujian Province, China (2015H6013); Science and Technology Platform Development Program of Fujian Province, China (2014H2005)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [40]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    随着云计算技术的普及,涌现出众多不同用途、不同类型的云计算平台.为了满足遗产系统整合和动态资源扩展等需求,常常需要构造混合云来统一管理不同云平台中的计算和存储资源.然而,不同云平台的管理接口和管理机制存在差异,使得开发混合云管理系统难度大、复杂度高.提出一种基于运行时模型的混合云管理方法:首先,在云平台管理接口的基础上,构造单一云平台的运行时模型;其次,根据云平台领域知识,提出一种云平台软件体系结构的统一模型;最后,通过模型转换,实现云平台统一模型到运行时模型的映射.于是,管理程序可以建立在云平台统一模型的基础上,降低了混合云管理系统开发的难度和复杂度.另外,还实现了基于运行时模型的CloudStack和亚马逊EC2混合云管理系统,并对方法的可行性和有效性进行了验证.

    Abstract:

    With the development of cloud computing, cloud platforms of different types and purposes are emerging. Hybrid clouds are needed to manage cross-domain computing and storage resources in a unified manner in order to satisfy management requirements such as legacy system integration and dynamic resource scaling. However, there are differences in management interfaces and mechanism between different cloud platforms, which cause great difficulties and high complexity to construction of hybrid clouds. In this paper, a runtime model based approach to managing hybrid clouds is presented. First, the manageability of cloud platforms is abstracted as runtime models based on their management interfaces. Second, a unified model of cloud software architecture is provided according to the domain knowledge of current cloud platforms. Third, the synchronization between the unified model and cloud runtime models is ensured through model transformation. Thus, all the management logic can be carried out by executing programs on the unified model, which decreases the difficulty and complexity of hybrid cloud construction. The experiment on a real-world hybrid cloud, which consists of CloudStack and Amazon EC2, demonstrates the feasibility, effectiveness and benefits of the new approach in managing hybrid clouds.

    参考文献
    [1] Mell P, Grance T. The NIST definition of cloud computing. Communications of the ACM, 2011,53(6):50.
    [2] Amazon Web Services (AWS). Cloud Computing Services. 2017. http://aws.amazon.com/
    [3] Kumar R, Jain K, Maharwal H, Jain N, Dadhich A. Apache CloudStack:Open source infrastructure as a service cloud computing platform. Int'l Journal of Advancement in Engineering Technology, Management and Applied Science, 2014,681-684.[doi:10.13140/2.1.1290.0483]
    [4] OpenStack. The open source cloud operating system. 2013. http://openstack.org/projects/
    [5] Nurmi D, Wolski R, Grzegorczyk C, Obertelli G, Soman S, Youseff L, Zagorodnov Z. The eucalyptus open-source cloudcomputing system. In:Proc, of the 9th IEEE/ACM Int'l Symp. on Cluster Computing and the Grid. Shanghai:IEEE Press, 2009. 124-131.[doi:10.1109/CCGRID.2009.93]
    [6] Garlan D. Software architecture:A roadmap. In:Proc. of the 22nd Int'l Conf. on Software Engineering, Future of Software Engineering Track. New York:ACM Press, 2000. 91-101.[doi:10.1145/336512.336537]
    [7] Mei H, Shen JR. Progress of research on software architecture. Ruan Jian Xue Bao/Journal of Software, 2006,17(6):1257-1275(in Chinese with English abstract). http://www.jos.org.cn/1000-9825/17/1257.htm[doi:10.1360/jos171257]
    [8] France R, Rumpe B. Model-Driven development of complex software:A research roadmap. In:Proc. of the 29th Int'l Conf. on Software Engineering. Minneapolis:IEEE Press, 2007. 37-54.[doi:10.1109/FOSE.2007.14]
    [9] Huang G, Ma XX, Tsai WT. A new software paradigm for Internet computing. National Science Review, 2014,1(2):168-169.[doi:10.1093/nsr/nwt014]
    [10] Bencomo N, Blair G, France R. Summary of the workshop models@run.time at MoDELS 2006. Models in Software Engineering, 2006,4364:227-231.[doi:10.1007/978-3-540-69489-2_28]
    [11] Blair G, Bencomo N, France R. Models@run.time. Computer, 2009,42(10):22-27.[doi:10.1109/MC.2009.326]
    [12] Huang G, Mei H, Yang FQ. Runtime recovery and manipulation of software architecture of component-based systems. Automated Software Engineering, 2006,13(2):257-281.[doi:10.1007/s10515-006-7738-4]
    [13] Occello A, Dery-Pinna A, Riveill M. A runtime model for monitoring software adaptation safety and its concretisation as a service. In:Models@runtime, Toulouse, 2008,8:67-76.
    [14] Wu YH, Huang G, Song H, Zhang Y. Model driven configuration of fault tolerance solutions for component-based software system. In:Proc. of the 15th Int'l Conf. on Model Driven Engineering Languages and Systems. Innsbruck:Springer-Verlag, 2012. 514-530.[doi:10.1007/978-3-642-33666-9_33]
    [15] Huang G, Song H, Mei H. SM@RT:Applying architecture-based runtime management of internetware systems. Int'l Journal of Software and Informatics, 2009,3(4):439-464.[doi:10.1145/1640206.1640215]
    [16] Song H, Huang G, Chauvel F, Xiong YF, Hu ZJ, Sun YC, Mei H. Supporting runtime software architecture:A bidirectionaltransformation-based approach. Journal of Systems and Software, 2011,84(5):711-723.[doi:10.1016/j.jss.2010.12.009]
    [17] Song H, Xiong YF, Chauvel F, Huang G, Hu ZJ, Mei H. Generating synchronization engines between running systems and their model-based views. In:Models in Software Engineering (the MoDELS Workshops). Denver:Springer-Verlag, 2009. 140-154.[doi:10.1007/978-3-642-12261-3_14]
    [18] Song H, Huang G, Xiong YF, Chauvel F, Sun YC, Mei H. Inferring meta-models for runtime system data from the clients of management APIs. In:Proc. of the 13rd Int'l Conf. on Model Driven Engineering Languages and Systems. Oslo:Springer-Verlag, 2010. 168-182.[doi:10.1007/978-3-642-16129-2_13]
    [19] Huang G, Chen X, Zhang Y, Zhang XD. Towards architecture-based management of platforms in the cloud. Frontiers of Computer Science, 2012,6(4):388-397.[doi:10.1007/s11704-012-2100-4]
    [20] Chen X, Zhang Y, Huang G, Zheng XH, Guo WZ, Rong CM. Architecture-Based integrated management of diverse cloud resources. Journal of Cloud Computing:Advances, Systems and Applications, 2014,3:11.[doi:10.1186/s13677-014-0011-7]
    [21] Object Management Group. Meta object facility (MOF) 2.0 query/view/transformation (QVT). 2011. http://www.omg.org/spec/QVT
    [22] IBM. IBM Tivoli Software. 2011. http://www-01.ibm.com/software/tivoli/
    [23] SpringSource. Hyperic. 2013. http://www.hyperic.com/
    [24] Sotomayor B, Montero RS, Llorente IM, Foster I. Virtual infrastructure management in private and hybrid clouds. IEEE Network Computing, 2009,13(5):14-22.[doi:10.1109/MIC.2009.119]
    [25] Lee BS, Yan SX, Ma D, Zhao GP. Aggregating IaaS service. In:Proc. of the 2011 Annual SRⅡ Global Conf. San Jose:IEEE Computer Society Press, 2011,14:335-338.[doi:10.1109/SRⅡ.2011.44]
    [26] Yan SX, Lee BS, Zhao GP, Ma D, Mohamed P. Infrastructure management of hybrid cloud for enterprise users. In:Proc. of the 5th Int'l DMTF Academic Alliance Workshop on Systems and Virtualization Management (SVM). Paris:IEEE Press, 2011. 1-6.[doi:10.1109/SVM.2011.6096463]
    [27] Suzuki J, H.Phan D, Higuchi M, Yamano Y, Oba K. Model-Driven integration for a service placement optimizer in a sustainable cloud of clouds. In:Proc. of the Joint, Int'l Conf. on Soft Computing and Intelligent Systems. Kobe:IEEE Press, 2012. 301-306.[doi:10.1109/SCIS-ISIS.2012.6505344]
    [28] Juve G, Deelman E. Automating application deployment in infrastructure clouds. In:Proc. of the 3rd IEEE Int'l Conf. on Coud Computing Technology and Science. Athens:IEEE Computer Society Press, 2011. 658-665.[doi:10.1109/CloudCom.2011.102]
    [29] Yue JY, Zhang Z, Fu JH, Lu SQ, Li XM, Shen YF. Extensible architecture for high-throughput task processing based on hybrid cloud infrastructure. In:Proc. of the 2011 Int'l Conf. on Electronics, Communications and Control (ICECC). IEEE Press, 2011. 1452-1455.[doi:10.1109/ICECC.2011.6067604]
    [30] Ruben VDB, Vanmechelen K, Broeckhove J. Cost-Optimal scheduling in hybrid IaaS clouds for deadline constrained workloads. In:Proc. of the 3rd IEEE Int'l Conf. on Cloud Computing (CLOUD). Miami:IEEE, 2010. 228-235.[doi:10.1109/CLOUD.2010.58]
    [31] Wang WJ, Chang YS, Lo WT, Lee YK. Adaptive scheduling for parallel tasks with QoS satisfaction for hybrid cloud environments. Journal of Supercomputing, 2013,66(2):783-811.[doi:10.1007/s11227-013-0890-2]
    [32] Fontán J, Vázquez T, Gonzalez L, et al. OpenNEbula:The open source virtual machine manager for cluster computing. In:Proc. of the Open Source Grid and Cluster Software Conf. San Francisco, 2008.
    [33] Rushby J. Model Checking and Other Ways of Automating Formal Methods. Software Quality Week, 1995. 1-12.
    [34] Bruneliere H, Cabot J, Jouault F, Madiot F. MoDisco:A generic and extensible framework for model driven reverse engineering. In:Proc. of the 25th IEEE/ACM Int'l Conf. on Automated Software Engineering. Antwerp:ACM Press, 2010. 173-174.[doi:10.1145/1858996.1859032]
    [35] Sicard S, Boyer F, Palma ND. Using components for architecture-based management:The self-repair case. In:Proc. of the 30th Int'l Conf. on Software Engineering. New York:ACM Press, 2008. 101-110.[doi:10.1145/1368088.1368103]
    [36] Morin B, Barais O, Nain G, Jezequel J. Taming dynamically adaptive systems using models and aspects. In:Proc. of the 31st Int'l Conf. on Software Engineering. Washington:IEEE Computer Society Press, 2009. 122-132.[doi:10.1109/ICSE.2009.5070514]
    [37] Li Y, Sun KW, Yang J, Liu TC, Zeng LZ. Model-Based system configuration approach for internetware. Science China Information Sciences, 2013,56(8):1-20.[doi:10.1007/s11432-013-4917-3]
    [38] Chen XP, Huang G, Chauvel F, Sun YC, Mei H. Integrating MOF-compliant analysis results. Int'l Journal of Software and Informatics, 2010,4(4):383-400.
    [39] Li JG, Chen XP, Huang G, Mei H, Chauvel F. Selecting fault tolerant styles for third-party components with model checking support. In:Proc. of the 12th Int'l Symp. on Component-Based Software Engineering. East Stroudsburg:Berlin, Heidelberg:Springer-Verlag, 2009. 69-86.[doi:10.1007/978-3-642-02414-6_5]
    [7] 梅宏,申峻嵘.软件体系结构研究进展.软件学报,2006,17(6):1257-1275. http://www.jos.org.cn/1000-9825/17/1257.htm[doi:10. 1360/jos171257]
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

陈星,兰兴土,李隘鹏,郭文忠,黄罡.基于运行时模型的混合云管理方法.软件学报,2017,28(7):1881-1897

复制
分享
文章指标
  • 点击次数:2782
  • 下载次数: 3873
  • HTML阅读次数: 1684
  • 引用次数: 0
历史
  • 收稿日期:2015-09-07
  • 最后修改日期:2015-11-18
  • 在线发布日期: 2016-10-19
文章二维码
您是第19791800位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号