用于形状识别的目标轮廓无序点集描述与匹配
作者:
基金项目:

国家自然科学基金(61372158);江苏省自然科学基金(BK20141487);江苏省“333工程”高层次人才资助项目(BRA2015351);江苏高校科研成果产业化推进工程项目(JHB2012-18);江苏高校优势学科建设工程资助项目(PAPD);江苏省政策引导类计划(产学研合作)-前瞻性联合研究项目(BY2016009-03)


Shape Recognition Using Unordered Point-Set Description and Matching of Object Contour
Author:
  • WANG Bin

    WANG Bin

    School of information engineering, Nanjing University of Finance and Economics, Nanjing 210023, China;Key Laboratory of Electronic Business(Nanjing University of Finance and Economics), Nanjing 210023, China;Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China
    在期刊界中查找
    在百度中查找
    在本站中查找
Fund Project:

National Natural Science Foundation of China (61372158); the Natural Science Foundation of Jiangsu Province (BK20141487), the “333” Foundation for high level talents of Jiangsu Province (BRA2015351); The industrialization of scientific research achievements in Universities of Jiangsu Province (JHB2012-18); the Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD); and the Policy guidance program (Cooperation of Industry, Education and Academy) of Jiangsu Province (BY2016009-03)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [29]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    将目标形状的轮廓看成一个无序的点集,从中抽取形状特征,用于快速而有效的目标识别是形状分析任务中的挑战性问题.针对该问题,提出了一种基于复杂网络模型的形状描述和识别方法.该方法提出用一种自组织的网络动态演化模型构成一个分层的描述框架,在网络动态演化的每一个时刻,对网络分别进行局部测量和全局测量,抽取网络的无权特征和加权特征.在形状匹配阶段,用获得的局部描述子和全局描述子分别进行局部匹配(基于Hausdorff距离)和全局匹配(基于L1距离),组合两种匹配的距离值构成对形状的差异度度量.用标准的测试集对所提出的方法进行性能测试,实验结果表明,所提出的算法能够快速而又鲁棒地完成较高精度的形状识别任务.

    Abstract:

    Treating the shape contour as an unordered point set and extracting shape features from it for fast and effective shape recognition is a challenge task of shape analysis. To address this issue, a complex-network based shape description and recognition method is proposed in this paper. In this method, a self-organized dynamic network-evolution model is built for providing a hierarchical description framework. In each moment of the dynamic evolution of the complex network, local and global measurements are performed against the network shut that both weighted and un-weighted features are extracted from the network. At the shape matching stage, the local matching (based on Hausdorff distance) and global matching (based on L1 distance) are conducted using the obtained local descriptor and global descriptor respectively. The dissimilar value between two shapes is determined by combining the two distance measures. Several standard test sets are used to evaluate the performance of the proposed method, and the experimental results show that the proposed method can provide robust and fast shape recognition in high accuracy.

    参考文献
    [1] Costa L da F, Jr. Cesar RM. Shape Analysis and Classification:Theory and Practice. 2nd ed., CRC Press LLC., 2001. 1-25.
    [2] Zhang D. Review of shape representation and description techniques. Pattern Recognition, 2004,37(1):1-19.[doi:10.1016/j.patcog. 2003.07.008]
    [3] Freeman H. On the encoding of arbitrary geometric configurations. IRE Trans. on Electronic Computers, 1961,10(2):260-268.[doi:10.1109/TEC.1961.5219197]
    [4] Adamek T, O'Connor NE. A multiscale representation method for nonrigid shapes with a single closed contour. IEEE Trans.on Circuits and Systems for Video Technology, 2004,14(5):742-753.[doi:10.1109/TCSVT.2004.826776]
    [5] Ling H, Jacobs DW. Shape classification using the inner-distance. IEEE Trans. on Pattern Analysis Machine Intelligence, 2007,29(2):286-299.[doi:10.1109/TPAMI.2007.41]
    [6] Alajlan N, Rube IE, Kamel MS, Freeman G. Shape retrieval using triangle-area representation and dynamic space warping. Pattern Recognition, 2007,40(7):1911-1920.[doi:10.1016/j.patcog.2006.12.005]
    [7] Xu C, Liu J, Tang X. 2D shape matching by contour flexibility. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2009,31(1):180-186.[doi:10.1109/TPAMI.2008.199]
    [8] Biswas S, Aggarwal G, Chellappa R. An efficient and robust algorithm for shape indexing and retrieval. IEEE Trans. on Multimedia, 2010,12(5):372-384.[doi:10.1109/TMM.2010.2050735]
    [9] Bai X, Yang X, Latecki LJ, Liu W, Tu Z. Learning context-sensitive shape similarity by graph transduction. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2010,32(5):861-874.[doi:10.1109/TPAMI.2009.85]
    [10] Wang J, Bai X, You X, Liu W, Latecki LJ. Shape matching and classification using height functions. Pattern Recognition Letters, 2012,33(2):134-143.[doi:10.1016/j.patrec.2011.09.042]
    [11] Wang B, Gao Y. Hierarchical string cuts:A translation, rotation, scale and mirror invariant descriptor for fast shape retrieval. IEEE Trans. on Image Processing, 2014,23(9):4101-4111.[doi:10.1109/TIP.2014.2343457]
    [12] Papadimitriou C, Stieglitz K. Combinatorial Optimization:Algorithms and Complexity. New York:Dover Publications, 1998. 248-254.
    [13] Belongie S, Malik J, Puzicha J. Shape matching and object recognition using shape contexts. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2002,24(4):509-522.[doi:10.1109/34.993558]
    [14] Shu X, Wu X.J. A novel contour descriptor for 2D shape matching and its application to image retrieval. Image and Vision Computing, 2011,29(4):286-294.[doi:10.1016/j.imavis.2010.11.001]
    [15] Grigorescu C, Petkov N. Distance sets for shape filters and shape recognition. IEEE Trans. on Image Processing, 2003,12(10):1274-1286.[doi:10.1109/TIP.2003.816010]
    [16] Albert R, Baravási A. Statistical mechanics of complex networks. Reviews of Modern Physics, 2002,74(1):47-97.[doi:10.1103/RevModPhys.74.47]
    [17] Costa LDF, Rodrigues FA, Travieso G, Villas Boas PR. Characterization of complex networks:A survey of measurements. Advances in Physics, 2007,56(1):167-242.[doi:10.1080/00018730601170527]
    [18] Backes AR, Casanova D, Bruno OM. A complex network-based approach for boundary shape analysis. Pattern Recognition, 2009, 42(1):54-67.[doi:10.1016/j.patcog.2008.07.006]
    [19] Backes AR, Bruno OM. Shape classification using complex network and multi-scale fractal dimension. Pattern Recognition Letters, 2010,31(1):44-51.[doi:10.1016/j.patrec.2009.08.007]
    [20] Tang J, Chen ZZ, Luo B, Sun DD. Shape descriptor and matching based on complex network and OSB. Acta Electronica Sinca, 2011,39(8):1757-1765(in Chinese with English abstract).
    [21] Tang J, Zhi DP, Jiang B, Luo B. Shape description and recognition based on directed complex network. Journal of Computer-aided Design & Computer Graphics, 2014,26(11):2039-2045(in Chinese with English abstract).
    [22] Gope C, Kehtarnavaz N. Affine invariant comparison of point-sets using convex hulls and Hausdorff distances. Pattern Recognition, 2007,40(1):309-320.[doi:10.1016/j.patcog.2006.04.026]
    [23] Dubuisson M, Jain A. A modified hausdorff distance for object matching. In:Proc. of the 12th Int'l Conf. on Pattern Recognition. IEEE, 1994. 566-568.[doi:10.1109/ICPR.1994.576361]
    [24] Sebastian TB, Klein PN, Kimia BB. Recognition of shapes by editing their shock graphs. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2004,26(5):550-571.[doi:10.1109/TPAMI.2004.1273924]
    [25] Latecki LJ, Lakamper R, Eckhardt U. Shape descriptors for non-rigid shapes with a single closed contour. In:Proc. of the 2000 IEEE Conf. on Computer Vision and Pattern Recognition. IEEE, 2000. 424-429.[doi:10.1109/CVPR.2000.855850]
    [26] Alt H, Behrends B, Blomer J. Measuring the resemblance of polygonal shapes. In:Proc. of the 7th ACM Symp. on Computer Geometry. New York:ACM Press, 1992. 102-109.
    附中文参考文献:
    [20] 汤进,陈展展,罗斌,孙登第.基于复杂网络和最优子序列双射的形状描述与匹配方法.电子学报,2011,39(8):1757-1765.
    [21] 汤进,郅大鹏,江波,罗斌.基于有向复杂网络模型的形状描述与识别.计算机辅助设计与图像学学报,2014,26(11):2039-2045.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

王斌.用于形状识别的目标轮廓无序点集描述与匹配.软件学报,2016,27(12):3131-3142

复制
分享
文章指标
  • 点击次数:2521
  • 下载次数: 4509
  • HTML阅读次数: 1672
  • 引用次数: 0
历史
  • 收稿日期:2015-11-16
  • 最后修改日期:2016-03-22
  • 在线发布日期: 2016-08-06
文章二维码
您是第19701257位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号